Microplastics (MPs) constitute the majority of marine plastic litter. The pollution caused by MPs has been categorized as a gradual and persistent crisis, but little is known about its extent along the shores of the Red Sea, particularly on the Egyptian side. The Red Sea is a rapidly developing region and home to critical ecosystems with high levels of endemism. This study represents the first comprehensive survey investigating the extent of MP pollution along the Egyptian shores of the Red Sea, including the Gulf of Suez and Aqaba. Mean concentrations ranged from 23.3 ± 15.28 to 930.0 ± 181.9 MPs/kg DW. Out of 17 beaches surveyed, 12 had mean concentrations of <200 items/kg, indicating a low occurrence of MPs compared to the shores of the Mediterranean Coast of Egypt. The pollution load index varied from low to medium levels in most locations. Ras Mohamed, a marine protected area, showed high vulnerability to MP pollution. All the investigated particles were fragments of secondary MPs. The sources of pollution mainly come from maritime activities, including cargo shipping and intense recreational activities. Fourier Transform Infrared Spectroscopy identified four plastic polymers, with polyethylene and polypropylene being the most common. The surface morphology of plastic particles was examined using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. All the particles exhibited signs of degradation, which could generate countless plastic pieces with possible deleterious impacts. This work has highlighted the importance of conducting region-specific assessments of mismanaged plastic waste, focusing on the role of tourism and recreational navigation as contributors to plastic litter, to estimate plastic waste inputs into the waters of the Red Sea Coast of Egypt. Efforts are needed to develop strategic plans to reduce the disposal of plastic waste in the region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166031DOI Listing

Publication Analysis

Top Keywords

red sea
16
suez aqaba
8
shores red
8
quantifying microplastics
4
pollution
4
microplastics pollution
4
red
4
pollution red
4
sea
4
sea gulfs
4

Similar Publications

Effects of protection on large-bodied reef fishes in the western Indian Ocean.

Conserv Biol

January 2025

UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France.

Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed.

View Article and Find Full Text PDF

Eggs as Part of a Potential In Vivo Model for Studying Sea Turtle Egg Fusariosis.

J Fungi (Basel)

January 2025

Department of Mycology, Real Jardín Botánico CSIC, Plaza Murillo 2, 28014 Madrid, Spain.

The fungal pathogens and are responsible for the emerging infectious disease named sea turtle egg fusariosis (STEF). This disease affects all sea turtle species throughout the world, causing low hatching success and mass mortalities. In this study, we investigated the potential use of widely available and easy-to-handle eggs of the invasive alien red-eared slider turtle, , as part of an in vivo host model to improve our knowledge of the biological properties of the pathogens responsible of the STEF.

View Article and Find Full Text PDF

Assessing the potential effects of climate change on the morphodynamics of the tropical coral reef islands in the Gulf of Mannar, Indian Ocean.

J Environ Manage

January 2025

Physical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403 004, Goa, India; School of Oceanography, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Low-lying and small tropical coral reef islands around the world are extremely vulnerable to the effects of global environmental change caused by the combination of anthropogenic climate change and escalating extreme hydrodynamic events. Erosion and inundation are anticipated to physically destabilize the tropical coral reef islands, rendering them uninhabitable within the next century. Therefore, it is crucial to assess the repercussions of these hazardous events on the delicate reef island ecosystem in order to conserve and ensure sustainable management.

View Article and Find Full Text PDF

An increasing amount of plastic litter and derelict fishing gear in the global oceans poses significant threats to corals and reef-associated marine biota. In this context, an underwater marine litter survey was conducted along the fringing coral reefs in the Andaman and Nicobar Islands- a remote archipelago in the Bay of Bengal, Northern Indian Ocean. The result revealed entanglement and smothering of coral colonies by plastic and derelict fishing gear.

View Article and Find Full Text PDF

Marine heatwaves are increasingly common due to human-induced climate change. Under prolonged thermal stress on coral reefs, corals can undergo bleaching, leading to mass coral mortality and large-scale changes in benthic community composition. While coral mortality has clear, negative impacts on the body condition and populations of coral-dependent fish species, the mechanisms that drive these changes remain poorly resolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!