The rapid development of livestock and poultry farming in China has resulted in an increasing threat of water pollution. In particular, mitigating livestock-related pollutant discharges is a key issue for environmental sustainability, especially for inland surface water bodies. In order to ensure the effective control of pollution and the efficient utilization management of livestock manure, spatially explicit surveys of pollutant generation and discharge from the livestock sector must be performed. In the present study, we estimated the grid cell-level distributions in the generation and discharge of four typical pollutants (chemical oxygen demand, ammonium nitrogen, total nitrogen and total phosphorus) from the livestock sector across the country with a spatial resolution of 30 arc-seconds. The distributions were estimated using the most recent pollution source census data and multi-sourced ancillary materials by a dasymetric mapping approach. We further investigated the feasibility of the resource utilization of livestock manure by comparing manure-source nutrients with the carrying capacity of adjacent croplands. Our results show that low-intensive farming generated and discharged the majority of livestock farming pollution, with other cattle and pigs breeding identified as the two major sources of pollution from the livestock sector. Southwest, Central and East China suffered the highly densified pollutants generation and discharges. Furthermore, cropland exceeding its carrying capacity was concentrated in these regions. Our findings provide additional insights into livestock and poultry farming in the context of relocation, strengthening regulation, transforming breeding operations, and rationalizing the resource use of manure, all of which are important measures for the sustainable development of both agriculture and the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166006 | DOI Listing |
Foods
December 2024
Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
Chinese local pig breeds have unique meat flavor. In this study, we investigated the meat quality traits and the characteristics of the nutritional flavor substances such as amino acids (AAs), fatty acids (FAs), thiamine (Vitamin B1, VB1), and inosine monophosphate (IMP) in four Shanghai local pig breeds (MMS, SW, PD, and SHW) and the commercial crossbred Duroc × Landrace × Yorkshire (DLY) breed. The results showed that the intramuscular fat (IMF) and protein content in the longissimus dorsi muscle (L) of Shanghai local breeds, especially Shanghai MMS and PD breeds, were significantly higher than those of the DLY breed (-value < 0.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60800, Pakistan.
This study determined the interaction between soybean hulls (SHs) and enzymes (β-mannanase) to improve the sustainability and efficacy of feeding programs for laying hens during peak production while ensuring the best health and efficiency. In a completely randomized design (CRD), 200 golden-brown hens were fed for four weeks (33 to 36 weeks) and randomly distributed into four groups, each containing four replicates of ten birds, with one group receiving a control diet (P0) and the others receiving diets that contained four combinations of SHs and enzymes (ENZs). e.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
Animals (Basel)
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK.
The chicken is the world's most farmed animal. In this work, we introduce the Chicks4FreeID dataset, the first publicly available dataset focused on the reidentification of individual chickens. We begin by providing a comprehensive overview of the existing animal reidentification datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!