Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we present a novel core-shell antibacterial agent designed for water disinfection purposes. The nanocomposite is synthesized by combining quince seed mucilage (QSM) as the shell material and FeO as the core material. The integration of antibacterial silver nanoparticles (Ag NPs) onto the QSM shell effectively prevents agglomeration of the Ag NPs, resulting in a larger contact surface area with bacteria and consequently exhibiting enhanced antibacterial activity. The incorporation of magnetic FeO NPs with a saturation magnetization of 55.2 emu·g as the core allows for easy retrieval of the nanocomposites from the medium using a strong magnetic field, enabling their reusability. The FeO/QSM/Ag nanocomposite is extensively characterized using XRD, FT-IR, VSM, DLS, FE-SEM, and TEM techniques. The characterization results confirm the successful synthesis of the nanocomposites, with an average particle size of 73 nm and no contamination or impurities detected. The nanocomposites exhibit superparamagnetic properties, with a saturated magnetization of 22.69 emu·g, ensuring facile separation from water. The antibacterial activity of the synthesized nanocomposite is evaluated using the disk diffusion method against both Gram-positive and Gram-negative bacteria. The results reveal excellent antibacterial efficacy, with minimum inhibition concentrations (MIC) of 0.8 mg·mL against E. coli and S. typhimurium. Furthermore, the measurement of released silver ions in water using ICP-OES indicates a low concentration of remaining silver ions in the medium, highlighting the controlled release of antimicrobial agents. Overall, this study provides valuable insights into the development of advanced antibacterial agents for water disinfection applications, offering potential solutions to combat microbial contamination effectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!