Pesticides are major agricultural stressors for freshwater species. Exposure to pesticides can disrupt the biotic integrity of freshwater ecosystems and impair associated ecosystem functions. Unfortunately, physiological mechanisms through which pesticides affect aquatic organisms are largely unknown. For example, the widely-used insecticide chlorantraniliprole is supposed to be highly selective for target pest species, i.e. Lepidoptera (butterflies), but its effect in aquatic non-target taxa is poorly studied. Using RNA-sequencing data, we quantified the insecticide effect on three aquatic invertebrate species: the caddisfly Lepidostoma basale, the mayfly Ephemera danica and the amphipod Gammarus pulex. Further, we tested how the insecticide-induced transcriptional response is modulated by biotic interaction between the two leaf-shredding species L. basale and G. pulex. While G. pulex was only weakly affected by chlorantraniliprole exposure, we detected strong transcriptional responses in L. basale and E. danica, implying that the stressor receptors are conserved between the target taxon Lepidoptera and other insect groups. We found in both insect species evidence for alterations of the developmental program. If transcriptional changes in the developmental program induce alterations in emergence phenology, pronounced effects on food web dynamics in a cross-ecosystem context are expected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122306DOI Listing

Publication Analysis

Top Keywords

aquatic non-target
8
developmental program
8
species
5
transcriptomic sequencing
4
sequencing data
4
data illuminate
4
illuminate insecticide-induced
4
insecticide-induced physiological
4
physiological stress
4
stress mechanisms
4

Similar Publications

The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments).

View Article and Find Full Text PDF

Combined effects of a pharmaceutical pollutant, gemfibrozil, and abiotic stressors (warming and air exposure) on cellular stress responses of the blue mussels Mytilus edulis.

Aquat Toxicol

January 2025

Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany. Electronic address:

Lipid-lowering drugs such as gemfibrozil (GFB) are widely used and highly biologically active, contributing to their persistence in wastewater and subsequent release into aquatic ecosystems. However, the potential impacts and toxic mechanisms of these emerging pollutants on non-target marine organisms, particularly keystone bivalves like Mytilus edulis, remain poorly understood. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of GFB (25 µg l) on oxidative, nitrosative, and dicarbonyl stress in M.

View Article and Find Full Text PDF

Effective prediction of organosilicon molecular structures and risks in aquatic environment with machine learning.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.

Until now, mass spectrometry databases lack molecular information of most organosilicon oligomers, and risk models needing accurate molecular descriptors are unavailable for these emerging contaminants with thousands of monomers. To address this issue, based on molecular/fragment ions and relative abundance from GC-Orbitrap-MS, this study developed appropriate classification (accuracies = 0.750-0.

View Article and Find Full Text PDF

Environmental drivers of fish bycatch composition in small-scale shrimp trawling along the southern Brazilian coast.

Environ Monit Assess

December 2024

School of the Sea, Science and Technology, Universidade Do Vale Do Itajaí (Univali, Rua Uruguai, 458, Itajaí, SC, CP 360, Brazil.

Small-scale shrimp trawling is crucial for the economy and culture of coastal communities worldwide, providing several ecosystem services. However, bottom trawling is well-known for its negative impacts on habitat structure and marine communities. Bycatch, or the accidental capture of non-target species during fishing, can offer valuable insights into the composition and variation of fish assemblages.

View Article and Find Full Text PDF

Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!