The application of stretchable strain sensors in human movement recognition, health monitoring, and soft robotics has attracted wide attention. Compared with traditional electronic conductors, stretchable ionic hydrogels are more attractive to organization-like soft electronic devices yet suffer poor sensitivity due to limited ion conduction modulation caused by their intrinsic soft chain network. This paper proposes a strategy to modulate ion transport behavior by geometry-induced strain concentration to adjust and improve the sensitivity of ionic hydrogel-based strain sensors (IHSS). Inspired by the phenomenon of vehicles slowing down and changing lanes when the road narrows, the strain redistribution of ionic hydrogel is optimized by structural and mechanical parameters to produce a strain-induced resistance boost. As a result, the gauge factor of the IHSS is continuously tunable from 1.31 to 9.21 in the strain range of 0-100%, which breaks through the theoretical limit of homogeneous strain-distributed ionic hydrogels and ensures a linear electromechanical response simultaneously. Overall, this study offers a universal route to modulate the ion transport behavior of ionic hydrogels mechanically, resulting in a tunable sensitivity for IHSS to better serve different application scenarios, such as health monitoring and human-machine interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558700 | PMC |
http://dx.doi.org/10.1002/advs.202303338 | DOI Listing |
Small
January 2025
Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!