Background: Retrospective studies have shown promising results using artificial intelligence (AI) to improve mammography screening accuracy and reduce screen-reading workload; however, to our knowledge, a randomised trial has not yet been conducted. We aimed to assess the clinical safety of an AI-supported screen-reading protocol compared with standard screen reading by radiologists following mammography.
Methods: In this randomised, controlled, population-based trial, women aged 40-80 years eligible for mammography screening (including general screening with 1·5-2-year intervals and annual screening for those with moderate hereditary risk of breast cancer or a history of breast cancer) at four screening sites in Sweden were informed about the study as part of the screening invitation. Those who did not opt out were randomly allocated (1:1) to AI-supported screening (intervention group) or standard double reading without AI (control group). Screening examinations were automatically randomised by the Picture Archive and Communications System with a pseudo-random number generator after image acquisition. The participants and the radiographers acquiring the screening examinations, but not the radiologists reading the screening examinations, were masked to study group allocation. The AI system (Transpara version 1.7.0) provided an examination-based malignancy risk score on a 10-level scale that was used to triage screening examinations to single reading (score 1-9) or double reading (score 10), with AI risk scores (for all examinations) and computer-aided detection marks (for examinations with risk score 8-10) available to the radiologists doing the screen reading. Here we report the prespecified clinical safety analysis, to be done after 80 000 women were enrolled, to assess the secondary outcome measures of early screening performance (cancer detection rate, recall rate, false positive rate, positive predictive value [PPV] of recall, and type of cancer detected [invasive or in situ]) and screen-reading workload. Analyses were done in the modified intention-to-treat population (ie, all women randomly assigned to a group with one complete screening examination, excluding women recalled due to enlarged lymph nodes diagnosed with lymphoma). The lowest acceptable limit for safety in the intervention group was a cancer detection rate of more than 3 per 1000 participants screened. The trial is registered with ClinicalTrials.gov, NCT04838756, and is closed to accrual; follow-up is ongoing to assess the primary endpoint of the trial, interval cancer rate.
Findings: Between April 12, 2021, and July 28, 2022, 80 033 women were randomly assigned to AI-supported screening (n=40 003) or double reading without AI (n=40 030). 13 women were excluded from the analysis. The median age was 54·0 years (IQR 46·7-63·9). Race and ethnicity data were not collected. AI-supported screening among 39 996 participants resulted in 244 screen-detected cancers, 861 recalls, and a total of 46 345 screen readings. Standard screening among 40 024 participants resulted in 203 screen-detected cancers, 817 recalls, and a total of 83 231 screen readings. Cancer detection rates were 6·1 (95% CI 5·4-6·9) per 1000 screened participants in the intervention group, above the lowest acceptable limit for safety, and 5·1 (4·4-5·8) per 1000 in the control group-a ratio of 1·2 (95% CI 1·0-1·5; p=0·052). Recall rates were 2·2% (95% CI 2·0-2·3) in the intervention group and 2·0% (1·9-2·2) in the control group. The false positive rate was 1·5% (95% CI 1·4-1·7) in both groups. The PPV of recall was 28·3% (95% CI 25·3-31·5) in the intervention group and 24·8% (21·9-28·0) in the control group. In the intervention group, 184 (75%) of 244 cancers detected were invasive and 60 (25%) were in situ; in the control group, 165 (81%) of 203 cancers were invasive and 38 (19%) were in situ. The screen-reading workload was reduced by 44·3% using AI.
Interpretation: AI-supported mammography screening resulted in a similar cancer detection rate compared with standard double reading, with a substantially lower screen-reading workload, indicating that the use of AI in mammography screening is safe. The trial was thus not halted and the primary endpoint of interval cancer rate will be assessed in 100 000 enrolled participants after 2-years of follow up.
Funding: Swedish Cancer Society, Confederation of Regional Cancer Centres, and the Swedish governmental funding for clinical research (ALF).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1470-2045(23)00298-X | DOI Listing |
Sci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
School of Psychology, Inner Mongolia Normal University, Hohhot, China.
The purpose of this study was to evaluate the psychometric properties of the Chinese version of the Revised Indebtedness Scale (IS-R-C) in mainland China. A total of 1057 university students participated in this study using a two-wave whole-group sampling method. Sample 1, consisting of 537 participants, was used for item analysis and exploratory factor analysis (EFA) of the Revised Indebtedness Scale (IS-R).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems (Danube University Krems), Krems, Austria.
Pneumococcal infections are a serious health issue associated with increased morbidity and mortality. This systematic review evaluated the efficacy, effectiveness, immunogenicity, and safety of the pneumococcal conjugate vaccine (PCV)15 compared to other pneumococcal vaccines or no vaccination in children and adults. We identified 20 randomized controlled trials (RCTs).
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Pesquisa em Cirurgia Toracica, Departamento de Cardiopneumologia, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!