Background: Alginate lyases are important tools for alginate biodegradation and oligosaccharide production, which have great potential in food and biofuel fields. The alginate polysaccharide utilization loci (PUL) typically encode a series of alginate lyases with a synergistic action pattern. Exploring valuable alginate lyases and revealing the synergistic effect of enzymes in the PUL is of great significance.
Results: An alginate PUL was discovered from the marine bacterium Wenyingzhuangia fucanilytica CZ1127 , and a repertoire of alginate lyases within it was cloned, expressed and characterized. The four alginate lyases in PUL demonstrated similar optimal reaction conditions: maximum enzyme activity at 35-50 °C and pH 8.0-9.0. The results of action pattern indicated that they were two PL7 endolytic bifunctional enzymes (Aly7A and Aly7B), a PL6 exolytic bifunctional enzyme (Aly6A) and a PL17 exolytic M-specific enzyme (Aly17A). Ultra-performance liquid chromatography-mass spectrometry was employed to reveal the synergistic effect of the four enzymes. The end products of Aly7A were further degraded by Aly7B and eventually generated oligosaccharides, from disaccharide to heptasaccharide. The oligosaccharide products were completely degraded to monosaccharides by Aly6A, but it was unable to directly degrade alginate. Aly17A could also produce monosaccharides by cleaving the M-blocks of oligosaccharide products, as well as the M-blocks of polysaccharides. The combination of these enzymes resulted in the complete degradation of alginate to monosaccharides.
Conclusion: A new alginate PUL was mined and four novel alginate lyases in the PUL were expressed and characterized. The four cooperative alginate lyases provide novel tools for alginate degradation and biological fermentation. © 2023 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.12898 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
An alginate lyase (FsAly7) from sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.
View Article and Find Full Text PDFMar Drugs
December 2024
Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.
Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.
View Article and Find Full Text PDFMolecules
November 2024
Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa.
Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!