Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unimolecular (Type I) radical photoinitiators (PIs) have transformed the chemical manufacturing industry by enabling (stereo)lithography for microelectronics and emergent 3D printing technologies. However, the reliance on high energy UV-violet light (≤420 nm) restricts the end-use applications. Herein, boron-methylated dipyrromethene (methylated-BODIPY) is shown to act as a highly efficient Type I radical PI upon irradiation with low energy green light. Using a low intensity (∼4 mW/cm) light emitting diode centered at 530 nm and a low PI concentration (0.3 mol %), acrylic-based resins were polymerized to maximum conversion in ∼10 s. Under equivalent conditions (wavelength, intensity, and PI concentration), state-of-the-art visible light PIs Ivocerin and Irgacure 784 show no appreciable polymerization. Spectroscopic characterization suggests that homolytic β-scission at the boron-carbon bond results in radical formation, which is further facilitated by accessing long-lived triplet excited states through installment of bromine. Alkylated-BODIPYs represent a new modular visible light PI platform with exciting potential to enable next generation manufacturing and biomedical applications where a spectrally discrete, low energy, and thus benign light source is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c05373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!