A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phase Diagram of High-Temperature Electron-Hole Quantum Droplet in Two-Dimensional Semiconductors. | LitMetric

Phase Diagram of High-Temperature Electron-Hole Quantum Droplet in Two-Dimensional Semiconductors.

ACS Nano

Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.

Published: August 2023

Quantum liquids, systems exhibiting effects of quantum mechanics and quantum statistics at macroscopic levels, represent one of the most exciting research frontiers of modern physical science and engineering. Notable examples include Bose-Einstein condensation (BEC), superconductivity, quantum entanglement, and a quantum liquid. However, quantum liquids are usually only stable at cryogenic temperatures, significantly limiting fundamental studies and device development. Here we demonstrate the formation of stable electron-hole liquid (EHL) with the quantum statistic nature at temperatures as high as 700 K in monolayer MoS and elucidate that the high-temperature EHL exists as droplets in sizes of around 100-160 nm. We also develop a thermodynamic model of high-temperature EHL and, based on the model, compile an exciton phase diagram, revealing that the ionized photocarrier drives the gas-liquid transition, which is subsequently validated with experimental results. The high-temperature EHL provides a model system to enable opportunities for studies in the pursuit of other high-temperature quantum liquids. The results can also allow for the development of quantum liquid devices with practical applications in quantum information processing, optoelectronics, and optical interconnections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c01365DOI Listing

Publication Analysis

Top Keywords

quantum liquids
12
high-temperature ehl
12
quantum
11
phase diagram
8
quantum liquid
8
high-temperature
5
diagram high-temperature
4
high-temperature electron-hole
4
electron-hole quantum
4
quantum droplet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!