How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403213PMC
http://dx.doi.org/10.1126/sciadv.adg3028DOI Listing

Publication Analysis

Top Keywords

bacterial calcium
12
calcium
8
calcium dynamics
8
calcium fluctuations
8
cell-autonomous diversification
4
diversification bacteria
4
bacteria arises
4
arises calcium
4
dynamics self-organizing
4
self-organizing critical
4

Similar Publications

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Virulence of many gram-negative bacteria relies upon delivery of type three effectors into host cells. To pass through the conduit of secretion machinery the effectors need to acquire an extended conformation, and in many bacterial species specific chaperones assist in this process. In plant pathogenic bacterium Pseudomonas syringae, secretion of only few effectors requires the function of chaperones.

View Article and Find Full Text PDF

Background And Objectives: The study focused on the amylase enzyme, widely used in the industrial starch liquefaction process. We looked into the best way to immobilize the native strain , which is the only alpha-amylase-producing bacterium, by trapping it in calcium alginate gel. This is a promising way to increase enzyme output.

View Article and Find Full Text PDF

Background: Recurrent caries were attributed to the lack of antibacterial properties of the dental materials. Silver nanoparticles (AgNPs) and calcium fluoride nanoparticles (CaF2NPs) are broad-spectrum antibacterial agents. The object of the study was to investigate the antibacterial properties of composite-incorporated AgNPs and CaF2NPs on .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!