Unlabelled: Using wearable robotics to modulate step width in normal walking for enhanced mediolateral balance has not been demonstrated in the field. We designed a bilateral hip exoskeleton with admittance control to power hip abduction and adduction to modulate step width.

Objective: As the first step to show its potential, the objective of this study was to investigate how human's step width reacted to hip exoskeleton's admittance control parameter changes during walking.

Methods: Ten non-disabled individuals walked on a treadmill at a self-selected speed, while wearing our bilateral robotic hip exoskeleton. We used two equilibrium positions to define the direction of assistance. We studied the influence of multiple stiffness values in the admittance control on the participants' step width, step length, and electromyographic (EMG) activity of the gluteus medius.

Results: Step width were significantly modulated by the change of stiffness in exoskeleton control, while step length did not show significant changes. When the stiffness changed from zero to our studied stiffness values, the participants' step width started to modulate immediately. Within 4 consecutive heel strikes right after a stiffness change, the step width showed a significant change. Interestingly, EMG activity of the gluteus medius did not change significantly regardless the applied stiffness and powered direction.

Conclusion: Tuning of stiffness in admittance control of a hip exoskeleton, acting in mediolateral direction, can be a viable way for controlling step width in normal walking. Unvaried gluteus medius activity indicates that the increase in step width were mainly caused by the assistive torque applied by the exoskeleton.

Significance: Our study results pave a new way for future design and control of wearable robotics in enhancing mediolateral walking balance for various rehabilitation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2023.3301444DOI Listing

Publication Analysis

Top Keywords

step width
36
hip exoskeleton
16
admittance control
16
step
13
width
9
wearable robotics
8
modulate step
8
width normal
8
normal walking
8
stiffness values
8

Similar Publications

Gluing is a critical step in aircraft sealing assembly, with glue profile inspection serving as the final quality assurance measure to ensure consistency and accuracy of the sealant coating, allowing timely detection and correction of defects to maintain assembly integrity and safety. Currently, existing glue inspection systems are limited to basic inspection capabilities, lack result digitization, and exhibit low efficiency. This paper proposes a 3D inspection technology for sealant coating quality based on line-structured light, enabling automated and high-precision inspection of sealant thickness, sealant width, positional accuracy, and overlap joint sealant contour through geometric computation.

View Article and Find Full Text PDF

Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking.

PLoS One

December 2024

Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.

Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.

View Article and Find Full Text PDF

: Chronic diarrhea in dogs is a prevalent condition that significantly impacts canine health, often leading to weight loss, dehydration, and malnutrition. Diagnosing and treating chronic diarrhea is challenging due to its multifactorial nature, necessitating collaboration among veterinarians across various specialties. Measuring cobalamin and folate levels is a crucial diagnostic step for all dogs with chronic diarrhea.

View Article and Find Full Text PDF

Objective: Camptocormia has been considered to contribute to vertical gait instability and, at times, may also lead to forward instability in experimental settings in Parkinson's disease (PD). However, these aspects, along with compensatory mechanisms, remain largely unexplored. This study comprehensively investigated gait instability and compensatory strategies in PD patients with camptocormia (PD+CC).

View Article and Find Full Text PDF

Lower extremity joint kinematics in individuals with and without bilateral knee osteoarthritis during normal and narrow-base walking: A cross-sectional study.

Knee

December 2024

Geriatric Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran; Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Knee osteoarthritis (KOA) is a prevalent musculoskeletal disease affecting joint mechanics. Considering the effect of step-width changes on the biomechanics of gait, especially the alteration of stability dynamics during narrow-base gait, this study investigated the kinematic parameters of the lower extremities during both normal and narrow-base walking in individuals with and without KOA.

Methods: A cross-sectional study with 20 individuals with bilateral KOA and 20 controls was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!