A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic Ultrasound Focusing and Centimeter-Scale Ex Vivo Tissue Ablations With a CMUT Probe Developed for Endocavitary HIFU Therapies. | LitMetric

AI Article Synopsis

  • Thermal ablation of localized prostate tumors using ultrasound-guided high-intensity focused ultrasound (USgHIFU) faces challenges, which may be improved by integrating advanced imaging and therapy techniques.
  • Capacitive micromachined ultrasound transducers (CMUTs) offer advantages like miniaturization and higher efficiency compared to traditional piezoelectric transducers, leading to the development of a dual-mode USgHIFU probe for prostate cancer treatment.
  • The feasibility of this CMUT-based probe was demonstrated through successful thermal ablation experiments on porcine liver tissue, showing it can effectively target localized tumors while enabling enhanced treatment techniques like dynamic focusing and probe movement.

Article Abstract

Thermal ablation of localized prostate tumors via endocavitary ultrasound-guided high-intensity focused ultrasound (USgHIFU) faces challenges that could be alleviated by better integration of dual modalities (imaging/therapy). Capacitive micromachined ultrasound transducers (CMUTs) may provide an alternative to existing piezoelectric technologies by exhibiting advanced integration capability through miniaturization, broad frequency bandwidth, and potential for high electroacoustic efficiency. An endocavitary dual-mode USgHIFU probe was built to investigate the potential of using CMUT technologies for transrectal prostate cancer ablative therapy. The USgHIFU probe included a planar 64-element annular high-intensity focused ultrasound (HIFU) CMUT array ( [Formula: see text] = 3 MHz) surrounding a 256-element linear imaging CMUT array. Acoustic characterization of the HIFU array included 3-D pressure field mapping and radiation force balance measurements. Ex vivo proof-of-concept experiments consisted in generating HIFU thermal ablations with the CMUT probe on porcine liver tissues. The planar CMUT probe enabled HIFU dynamic focusing (distance range: 32-72 mm) while providing acoustic surface intensities of 1 W/cm2 that allowed producing elementary ex vivo ablations in depth of liver tissue ( L ×W ≈ 10×5 mm). Combinations of dynamic focusing, along with probe rotation and translation produced larger thermal ablations ( L ×W ≈ 20×20 mm) by juxtaposing multiple elementary ablations, consistent with expected results obtained through numerical modeling. The technical feasibility of using a USgHIFU probe, fully developed using CMUTs for tissue ablation purposes, was demonstrated. The HIFU-CMUT array showed tissue ablation capabilities with volumes compatible with localized cancer targeting, thus providing assets for further development of focal therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2023.3301977DOI Listing

Publication Analysis

Top Keywords

cmut probe
12
usghifu probe
12
ablations cmut
8
high-intensity focused
8
focused ultrasound
8
cmut array
8
thermal ablations
8
dynamic focusing
8
×w ≈
8
tissue ablation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!