Topography of mutational signatures in human cancer.

Cell Rep

Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA. Electronic address:

Published: August 2023

The somatic mutations found in a cancer genome are imprinted by different mutational processes. Each process exhibits a characteristic mutational signature, which can be affected by the genome architecture. However, the interplay between mutational signatures and topographical genomic features has not been extensively explored. Here, we integrate mutations from 5,120 whole-genome-sequenced tumors from 40 cancer types with 516 topographical features from ENCODE to evaluate the effect of nucleosome occupancy, histone modifications, CTCF binding, replication timing, and transcription/replication strand asymmetries on the cancer-specific accumulation of mutations from distinct mutagenic processes. Most mutational signatures are affected by topographical features, with signatures of related etiologies being similarly affected. Certain signatures exhibit periodic behaviors or cancer-type-specific enrichments/depletions near topographical features, revealing further information about the processes that imprinted them. Our findings, disseminated via the COSMIC (Catalog of Somatic Mutations in Cancer) signatures database, provide a comprehensive online resource for exploring the interactions between mutational signatures and topographical features across human cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507738PMC
http://dx.doi.org/10.1016/j.celrep.2023.112930DOI Listing

Publication Analysis

Top Keywords

mutational signatures
16
topographical features
16
signatures topographical
12
human cancer
8
somatic mutations
8
mutations cancer
8
signatures
7
cancer
5
mutational
5
topographical
5

Similar Publications

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

Missense variants that change the amino acid sequences of proteins cause one-third of human genetic diseases. Tens of millions of missense variants exist in the current human population, and the vast majority of these have unknown functional consequences. Here we present a large-scale experimental analysis of human missense variants across many different proteins.

View Article and Find Full Text PDF

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.

View Article and Find Full Text PDF

Investigating the origins of the mutational signatures in cancer.

Nucleic Acids Res

January 2025

Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.

Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!