LncRNA XXYLT1-AS2 promotes tumor progression via autophagy inhibition through ubiquitinated degradation of TFEB in hepatocellular carcinoma.

Clin Transl Oncol

Department of Laboratory Medicine, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.

Published: March 2024

Purpose: There is compelling evidence that long-stranded non-coding RNAs (lncRNAs) play an important role in the progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of lncRNA XXYLT1 antisense-2 (XXYLT1-AS2) in HCC progression.

Methods: Real-time PCR was used to assess the levels of XXYLT1-AS2 in plasma from HCC and normal patients. Cell proliferation, apoptosis, migration, and invasion were monitored, and tumor xenografts were established to investigate the biological functions of XXYLT1-AS2 by gain-of-function and loss-of-function studies in vitro and in vivo, the expression of autophagy biomarkers and transcriptional factor EB (TFEB) was examined by immunoprecipitation, ubiquitination assays, and western blotting. Autophagy inhibitor, 3-methyladenine (3MA), and proteasome inhibitor, MG132, were used to verify the role of autophagy in HCC progression and the effect of XXYLT1-AS2 on TFEB ubiquitination, respectively.

Results: In this study, we identified that lncRNA XXYLT1-AS2 is highly expressed in HCC plasma and promotes tumor growth in vivo. In functional studies, it was found that silent expression of XXYLT1-AS2 inhibited HCC proliferation, migration, invasion, and activated autophagy of HCC cells, which were attenuated by autophagy inhibitor, 3MA. Mechanistically, XXYLT1-AS2 decreased the protein level of TFEB through promoting its degradation by ubiquitin proteasome pathway.

Conclusion: XXYLT1-AS2 plays an oncogenic role in HCC progression through inhibition of autophagy via promoting the degradation of TFEB, and thus could be a novel target for HCC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12094-023-03294-3DOI Listing

Publication Analysis

Top Keywords

hcc
9
lncrna xxylt1-as2
8
promotes tumor
8
degradation tfeb
8
hepatocellular carcinoma
8
xxylt1-as2
8
migration invasion
8
autophagy inhibitor
8
autophagy hcc
8
hcc progression
8

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a primary cause of chronic liver disease, with potential progression to cirrhosis and hepatocellular carcinoma (HCC). Although systemic inflammatory biomarkers are associated with liver diseases, their specific role in MASLD remains unclear. This study examines the association between systemic inflammatory biomarkers and MASLD.

View Article and Find Full Text PDF

Objectives: To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC).

Methods: Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined.

View Article and Find Full Text PDF

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!