Background: Pulmonary vein isolation (PVI) is the primary technique for ablation of atrial fibrillation (AF). It is unclear whether adjunctive therapies in addition to PVI can reduce atrial arrhythmia recurrence (AAR) compared to PVI alone in patients with AF.
Methods: A meta-analysis of randomized controlled trials comparing PVI plus an adjunctive therapy (autonomic modulation, linear ablation, non-pulmonary vein trigger ablation, epicardial PVI [hybrid ablation], or left atrial substrate modification) to PVI alone was conducted. The primary outcome was AAR. Cumulative odd's ratios (OR) and 95% confidence intervals (CI) were calculated for each treatment type.
Results: Forty-six trials were identified that included 8,500 participants. The mean age (± standard deviation) was 60.2 (±4.1) years, and 27.2% of all patients were female. The mean follow-up time was 14.6 months. PVI plus autonomic modulation and PVI plus hybrid ablation were associated with a relative 53.1% (OR 0.47; 95% CI 0.32 to 0.69; p < 0.001) and 59.1% (OR 0.41; 95% CI 0.23 to 0.75; p = 0.003) reduction in AAR, respectively, compared to PVI alone. All categories had at least moderate interstudy heterogeneity except for hybrid ablation.
Conclusion: Adjunctive autonomic modulation and epicardial PVI may improve the effectiveness of PVI. Larger, multi-center randomized controlled trials are needed to evaluate the efficacy of these therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10840-023-01609-6 | DOI Listing |
J Pain Res
January 2025
NXTSTIM INC. Department of Pain Medicine, San Diego, CA, USA.
Transcutaneous Electrical Nerve Stimulation (TENS) and Electronic Muscle Stimulation (EMS) are non-invasive therapies widely used for pain relief and neuromuscular adaptation. However, the clinical research supporting the efficacy of TENS in chronic pain management is limited by significant methodological flaws, including small sample sizes and inconsistent reporting of stimulation parameters. TENS modulates pain perception through various techniques, targeting specific nerve fibers and pain pathways.
View Article and Find Full Text PDFSports Med Health Sci
March 2025
Laboratory of Experimental Neurosciences, University of South Santa Catarina (UNISUL), Avenida Pedra Branca n 25, 88137-900, Palhoça, Santa Catarina, Brazil.
High-Intensity Interval Training (HIIT) has gained prominence as a time-efficient and effective exercise modality to improve cardiovascular (CV) fitness, metabolic health, and physical performance. Therefore, our aim was to synthesize current clinical research on the effects of HIIT on the Autonomic Nervous System. We conducted the search for studies in the Directory of Open Access Journals, Embase, Virtual Health Library, Pubmed, and Scielo databases, in January of 2024.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.
View Article and Find Full Text PDFJ Clin Med
December 2024
Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11451, Saudi Arabia.
The role of autonomic nervous system (ANS) modulation in chronic neck pain remains elusive. Transcutaneous vagus nerve stimulation (t-VNS) provides a novel, non-invasive means of potentially mitigating chronic neck pain. This study aimed to assess the effects of ANS modulation on heart rate variability (HRV), pain perception, and neck disability.
View Article and Find Full Text PDFCurr Biol
January 2025
Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore 21205, USA. Electronic address:
The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!