Glioma is a general neurological tumor and circular RNAs (circRNAs) have been implicated in glioma development. However, the underlying mechanisms and circRNA biological functions responsible for the regulation of glioma progression remain unknown. In this study, we employ next-generation sequencing (NGS) to investigate altered circRNA expression in glioma tissues. Regulatory mechanisms were studied using luciferase reporter analyses, transwell migration, CCK8, and EdU analysis. Tumorigenesis and metastasis assays were utilized to determine the function of hsa_circ_0010889 in glioma. Our results showed that hsa_circ_0010889 expression increased in glioma cell lines and tissues, indicating that hsa_circ_0010889 may be involved in glioma progression. Downregulation of hsa_circ_0010889 inhibited glioma invasion and proliferation in both and experiments and luciferase report assays found that miR-590-5p and SATB1 were downstream targets for hsa_circ_0010889. SATB1 overexpression or miR-590-5p inhibition reversed glioma cells proliferation and migration post-silencing of hsa_circ_0010889. Taken together, our study demonstrates that hsa_circ_0010889 downregulation inhibits glioma progression through the miR-590-5p/SATB1 axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457064 | PMC |
http://dx.doi.org/10.18632/aging.204907 | DOI Listing |
J Biol Chem
January 2025
Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India, 741235. Electronic address:
Aberrant activation of the hedgehog (Hh) signaling pathway positively correlates with progression, invasion and metastasis of several cancers, including breast cancer. Although numerous inhibitors of the Hh signaling pathway are available, several oncogenic mutations of key components of the pathway, including Smoothened (Smo), have limited their capability to be developed as putative anti-cancer drugs. In this study, we have modulated the Hh signaling pathway in breast cancer using a specific FDA-approved phosphodiesterase 4 (PDE4) inhibitor rolipram.
View Article and Find Full Text PDFNeurooncol Adv
January 2025
Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
Background: Publicly available data are essential for the progress of medical image analysis, in particular for crafting machine learning models. Glioma is the most common group of primary brain tumors, and magnetic resonance imaging (MRI) is a widely used modality in their diagnosis and treatment. However, the availability and quality of public datasets for glioma MRI are not well known.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Oncology, Suining Central Hospital, Suining, Sichuan, China.
Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Pediatric and Adolescent Oncology/Hematology, Perth Children's Hospital, Nedlands, WA, Australia.
Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (), with mutated (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT.
Background: Treatment-related changes may occur due to radiation and temozolomide in glioblastoma and can mimic tumor progression on conventional MRI. DCE-MRI enables quantification of the extent of blood-brain barrier (BBB) disruption, providing information about areas of suspicious postcontrast T1 enhancement. We compared DCE-MRI processing methods for distinguishing true disease progression from pseudoprogression in high-grade gliomas (HGGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!