Ribonuclease A (RNase A) is an endonuclease that plays a significant role in antimicrobial activity by the cleavage and hydrolysis of ssRNA. In this study, the interactions between RNase A and cCMP have been investigated, through molecular docking and a 200 ns molecular dynamics simulation. The enzyme kinetic properties were analyzed using saturation curve, Eadie-Hofstee, and Hill plots. The docking results indicate that the cCMP-RNase A complexes are stabilized through hydrophobic interaction, hydrogen bonding, and π-π stacking interaction. The most binding site is observed in the catalytic cleft, especially at residue His12 and His119. Enzyme-ligand docking study indicates that cCMP binds to residues located in the internal cavity of the catalytic site and shows three phases of binding modes. The analysis of MD simulations shows that RMSD, Rg, and RMSF reach equilibrium. The ΔG of the cCMP-RNase A was negative (-619.673 kJ/mol), The comparison between the results pre and post MD simulation showed that ΔG after MD simulation causes to more stable the structure than before simulation. Experimental methods such as saturation, Eadie-Hofstee, and Hill plots confirm theoretical data and show three phases of binding modes as well. Two significant events are demonstrated in the interaction between RNase A and cCMP: substrate activation and substrate inhibition are observed in concentrations below and above 0.8 mM, respectively, for cCMP. Choosing the appropriate concentration of cCMP is very important in investigation of ribonuclease A's catalytic behavour, especially for exploration of the effects of some drugs on biological behaviours related to ribonuclease A.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2235618DOI Listing

Publication Analysis

Top Keywords

substrate inhibition
8
substrate activation
8
investigation ribonuclease
8
rnase ccmp
8
eadie-hofstee hill
8
hill plots
8
three phases
8
phases binding
8
binding modes
8
ccmp
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!