A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combining predictive and analytical methods to elucidate pharmaceutical biotransformation in activated sludge. | LitMetric

While man-made chemicals in the environment are ubiquitous and a potential threat to human health and ecosystem integrity, the environmental fate of chemical contaminants such as pharmaceuticals is often poorly understood. Biodegradation processes driven by microbial communities convert chemicals into transformation products (TPs) that may themselves have adverse ecological effects. The detection of TPs formed during biodegradation has been continuously improved thanks to the development of TP prediction algorithms and analytical workflows. Here, we contribute to this advance by (i) reviewing past applications of TP identification workflows, (ii) applying an updated workflow for TP prediction to 42 pharmaceuticals in biodegradation experiments with activated sludge, and (iii) benchmarking 5 different pathway prediction models, comprising 4 prediction models trained on different datasets provided by enviPath, and the state-of-the-art EAWAG pathway prediction system. Using the updated workflow, we could tentatively identify 79 transformation products for 31 pharmaceutical compounds. Compared to previous works, we have further automatized several steps that were previously performed by hand. By benchmarking the enviPath prediction system on experimental data, we demonstrate the usefulness of the pathway prediction tool to generate suspect lists for screening, and we propose new avenues to improve their accuracy. Moreover, we provide a well-documented workflow that can be (i) readily applied to detect transformation products in activated sludge and (ii) potentially extended to other environmental studies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3em00161jDOI Listing

Publication Analysis

Top Keywords

activated sludge
12
transformation products
12
pathway prediction
12
updated workflow
8
prediction models
8
prediction system
8
prediction
7
combining predictive
4
predictive analytical
4
analytical methods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!