Currently, energy efficiency and saving in production engineering, including Material Extrusion (MEX) Additive Manufacturing, are of key importance to ensure process sustainability and cost-effectiveness. The functionality of parts made with MEX 3D-printing remains solid, especially for expensive high-performance polymers, for biomedical, automotive, and aerospace industries. Herein, the energy and tensile strength metrics are investigated over three key process control parameters (Nozzle Temperature, Layer Thickness, and Printing Speed), with the aid of laboratory-scale PEEK filaments fabricated with melt extrusion. A double optimization is attempted for the production by consuming minimum energy, of PEEK parts with improved strength. A three-level Box-Behnken design with five replicas for each experimental run was employed. Statistical analysis of the experimental findings proved that LT is the most decisive control setting for mechanical strength. An LT of 0.1 mm maximized the tensile endurance (∼74 MPa), but at the same time, it was responsible for the worst energy (∼0.58 MJ) and printing time (∼900 s) expenditure. The experimental and statistical findings are further discussed and interpreted using fractographic SEM and optical microscopy, revealing the 3D printing quality and the fracture mechanisms in the samples. Thermogravimetric analysis (TGA) was performed. The findings hold measurable engineering and industrial merit, since they may be utilized to achieve an optimum case-dependent compromise between the usually contradictory goals of productivity, energy performance, and mechanical functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395642PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e18363DOI Listing

Publication Analysis

Top Keywords

control parameters
8
energy tensile
8
mex 3d-printing
8
energy
6
box-behnken modeling
4
modeling quantify
4
quantify impact
4
impact control
4
parameters energy
4
tensile efficiency
4

Similar Publications

This study assesses the effect of carotid sinus blockade applied with a local anesthetic on hemodynamic parameters during carotid endarterectomy (CEA) operations performed under general anesthesia. The medical records of patients who underwent CEA under general anesthesia between January 2020 and December 2022, were retrospectively reviewed. It was recorded whether the patients received carotid sinus block with 2 mL of 2% prilocaine.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.

Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.

View Article and Find Full Text PDF

Background: Cinnamon has been studied as a possible way to control blood glucose and serum cholesterol levels. However, there are no well-conducted randomized controlled trials that can accurately measure the lipid and glucose-lowering effects of Cinnamomum zeylanicum (C. zeylanicum) extract.

View Article and Find Full Text PDF

Mathematical assessment of the role of temperature on desert locust population dynamics.

PLoS One

January 2025

School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America.

This study presents a novel non-autonomous mathematical model to explore the intricate relationship between temperature and desert locust population dynamics, considering the influence of both solitarious and gregarious phases across all life stages. The model incorporates temperature-dependent parameters for key biological processes, including egg development, hopper growth, adult maturation, and reproduction. Theoretical analysis reveals the model's capacity for complex dynamical behaviors, such as multiple stable states and backward bifurcations, suggesting the potential for sudden and unpredictable population shifts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!