The conversion of palm kernel shells (PKS), a major agricultural waste from the palm oil sector, into a potentially high-value biosorbent for heavy metals-contaminated wastewater treatments was explored in this work. Following carbonization, the activated PKS was chemically activated by soaking the biochar in a phosphoric acid (HPO) solution at 25 °C. The low-temperature approach benefits from less dangerous acid fume production and operational challenges when compared to the high-temperature procedure. The properties of the biochar were characterized by BET, FTIR, and SEM. The effects of HPO dosage, initial Pb(II) concentration, and adsorbent dosage on removing Pb(II) from synthetic wastewater were investigated in the adsorption study. The activation of PKS biochar with high H3PO4 concentrations led to enhanced removal efficiency. The pseudo-second-order (PSO) kinetic model fitted the experimental data well ( 0.99), indicating that chemisorption was likely involved in the adsorption of Pb(II) onto activated PKS. Pb(II) sorption was possibly promoted by the presence of phosphate moieties on the adsorbent surface. The Langmuir isotherm best described the sorption of Pb(II) onto the activated PKS ( 0.97), giving the calculated maximum adsorption capacity (q) of 171.1 μg/g. In addition to physical sorption, possible adsorption mechanisms included functional group complexation and surface precipitation. Overall, activating PKS biochar with HPO at room temperature could be a promising technique to improve the adsorbent's adsorption efficiency for Pb(II) removal from wastewater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394918 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17250 | DOI Listing |
Biochemistry
January 2025
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .
View Article and Find Full Text PDFPlanta
January 2025
Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microbiology, Institute of Plant and Microbial Biology, University of Zrich, Zurich, Switzerland.
A novel strain, 681, was isolated from a moss sample taken from the Chrutzelried woods in Canton Zürich, Switzerland. The strain showed potent activity against several fungi and oomycetes. It was affiliated to the genus by 16S rRNA gene sequence phylogeny.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia.
Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States.
Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!