Biosorption of aqueous Pb(II) by HPO-activated biochar prepared from palm kernel shells (PKS).

Heliyon

School of Engineering and Technology, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160 Thailand.

Published: July 2023

AI Article Synopsis

  • The study investigates the conversion of palm kernel shells (PKS) into a biosorbent for removing heavy metals from wastewater, focusing on lead (Pb(II)).
  • After carbonizing PKS, the biochar is chemically activated with phosphoric acid at a low temperature, which minimizes hazardous fumes compared to high-temperature methods.
  • The results show effective Pb(II) removal, with a maximum adsorption capacity of 171.1 μg/g and indications that the process involves both physical and chemical adsorption mechanisms.

Article Abstract

The conversion of palm kernel shells (PKS), a major agricultural waste from the palm oil sector, into a potentially high-value biosorbent for heavy metals-contaminated wastewater treatments was explored in this work. Following carbonization, the activated PKS was chemically activated by soaking the biochar in a phosphoric acid (HPO) solution at 25 °C. The low-temperature approach benefits from less dangerous acid fume production and operational challenges when compared to the high-temperature procedure. The properties of the biochar were characterized by BET, FTIR, and SEM. The effects of HPO dosage, initial Pb(II) concentration, and adsorbent dosage on removing Pb(II) from synthetic wastewater were investigated in the adsorption study. The activation of PKS biochar with high H3PO4 concentrations led to enhanced removal efficiency. The pseudo-second-order (PSO) kinetic model fitted the experimental data well ( 0.99), indicating that chemisorption was likely involved in the adsorption of Pb(II) onto activated PKS. Pb(II) sorption was possibly promoted by the presence of phosphate moieties on the adsorbent surface. The Langmuir isotherm best described the sorption of Pb(II) onto the activated PKS ( 0.97), giving the calculated maximum adsorption capacity (q) of 171.1 μg/g. In addition to physical sorption, possible adsorption mechanisms included functional group complexation and surface precipitation. Overall, activating PKS biochar with HPO at room temperature could be a promising technique to improve the adsorbent's adsorption efficiency for Pb(II) removal from wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394918PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e17250DOI Listing

Publication Analysis

Top Keywords

activated pks
12
palm kernel
8
kernel shells
8
shells pks
8
pks biochar
8
pbii activated
8
pbii
7
pks
7
biochar
5
adsorption
5

Similar Publications

Insights into Heterocycle Biosynthesis in the Cytotoxic Polyketide Alkaloid Janustatin A from a Plant-Associated Bacterium.

Biochemistry

January 2025

Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .

View Article and Find Full Text PDF

Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii.

Planta

January 2025

Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.

The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization.

View Article and Find Full Text PDF

sp. nov., a potently antifungal bacterium isolated from moss.

Int J Syst Evol Microbiol

January 2025

Department of Microbiology, Institute of Plant and Microbial Biology, University of Zrich, Zurich, Switzerland.

A novel strain, 681, was isolated from a moss sample taken from the Chrutzelried woods in Canton Zürich, Switzerland. The strain showed potent activity against several fungi and oomycetes. It was affiliated to the genus by 16S rRNA gene sequence phylogeny.

View Article and Find Full Text PDF

Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation.

View Article and Find Full Text PDF

Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!