L. Roscoe is a significant herb that possesses many medicinal and ethnomedicinal properties. Due to the presence of various bioactive compounds, it has immense healing capacity. However, ginger as a crop is susceptible to several fungal pathogens. Among all the fungal pathogens, and spp are of most concern, causing soft rot (rhizome rot) disease, majorly responsible for the downfall in its production by 50-90%. Pesticides and fungicides spray is generally recommended for the control of soft rot. Ample use of chemicals not only affects the quality of the crop but also disturbs ecological integrity. Therefore, biological methods of disease management involving suitable microbial agents such as spp., spp. and plant extracts are attracting and gaining importance as a part of integrated approaches (IPM) to manage the soft rot and sustainably enhance the production and improve the medicinal and pharmaceutical values of ginger. The present review is aimed to discuss various means of controlling soft rot disease by physical, chemical, biological, and nanotechnology-based methods. Moreover, various bioactive constituents of ginger and their pharmaceutical importance have been also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395546PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e18337DOI Listing

Publication Analysis

Top Keywords

soft rot
20
rot disease
12
disease management
8
fungal pathogens
8
rot
6
soft
5
comprehensive review
4
review soft
4
disease
4
ginger
4

Similar Publications

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF

Watermelon (), it's an important fruit in Brazil, producing 1.9 million ton/year, occupies the fifth place in the world, (FAO, 2022), but post-harvest diseases are a major limitation, leading to losses of up to 15% (Balasubramaniam et al. 2023).

View Article and Find Full Text PDF

Background: The modification of protein substrates by small ubiquitin-related modifier (SUMO) plays a vital role in plants subjected to biotic and abiotic stresses. However, its role in the stress responses of Brassica plants remains poorly understood.

Results: A genome-wide analysis revealed the presence of 30 SUMOylation genes in the Caixin genome.

View Article and Find Full Text PDF

is known for causing soft rot in fruit and vegetables during postharvest. Although it has traditionally been considered a saprophyte, it appears to behave more like a necrotrophic pathogen. In this study, we propose that invades host tissues by actively killing host cells and overcoming the host defense mechanisms, as opposed to growing saprophytically on decaying plant matter.

View Article and Find Full Text PDF

Potential risks of bacterial plant pathogens from thawing permafrost in the Alaskan tundra.

Ecotoxicol Environ Saf

December 2024

Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea. Electronic address:

Global warming-induced permafrost thawing raises concerns about the release of dormant microbes, including potentially harmful plant pathogens. However, the potential pathogenic risks associated with the thawing of permafrost remain poorly understood. Here, we conducted a 90-day soil incubation experiment at 4 °C to mimic extended permafrost thawing in Alaskan tundra soils stratified into active (A), transitional (T), and permanently frozen (P) layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!