The analysis and processing of electrocardiogram (ECG) signals is a vital step in the diagnosis of cardiovascular disease. ECG offers a non-invasive and risk-free method for monitoring the electrical activity of the heart that can assist in predicting and diagnosing heart diseases. The manual interpretation of the ECG signals, however, can be challenging and time-consuming even for experts. Machine learning techniques are increasingly being utilized to support the research and development of automatic ECG classification, which has emerged as a prominent area of study. In this paper, we propose a deep neural network model with residual blocks (DNN-RB) to classify cardiac cycles into six ECG beat classes. The MIT-BIH dataset was used to validate the model resulting in a test accuracy of 99.51%, average sensitivity of 99.7%, and average specificity of 98.2%. The DNN-RB method has achieved higher accuracy than other state-of-the-art algorithms tested on the same dataset. The proposed method is effective in the automatic classification of ECG signals and can be used for both clinical and out-of-hospital monitoring and classification combined with a single-lead mobile ECG device. The method has also been integrated into a web application designed to accept digital ECG beats as input for analyses and to display diagnostic results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395346 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17974 | DOI Listing |
Commun Med (Lond)
January 2025
Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
Background: The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures.
Methods: We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated.
Sci Rep
January 2025
Department of Biosystems Engineering, Graduate School of Science and Engineering, Yamagata University (emeritus), Yonezawa, Japan.
We developed a deep learning-based extraction of electrocardiographic (ECG) waves from ballistocardiographic (BCG) signals and explored their use in R-R interval (RRI) estimation. Preprocessed BCG and reference ECG signals were inputted into the bidirectional long short-term memory network to train the model to minimize the loss function of the mean squared error between the predicted ECG (pECG) and genuine ECG signals. Using a dataset acquired with polyvinylidene fluoride and ECG sensors in different recumbent positions from 18 participants, we generated pECG signals from preprocessed BCG signals using the learned model and evaluated the RRI estimation performance by comparing the predicted RRI with the reference RRI obtained from the ECG signal using a leave-one-subject-out cross-validation scheme.
View Article and Find Full Text PDFMitochondrion
January 2025
The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine.
Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration.
View Article and Find Full Text PDFJ Electrocardiol
December 2024
VPG Medical, Inc., Rochester, NY, USA.
Passive cardiac monitoring has become synonymous with wearable technologies, necessitating patients to incorporate new devices into their daily routines. While this requirement may not be a burden for many, it is a constraint for individuals with chronic diseases who already have their daily routine. In this study, we introduce an innovative technology that harnesses the front-facing camera of smartphones to capture pulsatile signals discreetly when users engage in other activities on their device.
View Article and Find Full Text PDFComput Biol Med
December 2024
École de technologie supérieure, 1100 Notre-Dame St W, Montreal, H3C 1K3, Quebec, Canada; Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), 527 Rue Sherbrooke O #8, Montréal, QC H3A 1E3, Canada. Electronic address:
Background: Although stress plays a key role in tinnitus and decreased sound tolerance, conventional hearing devices used to manage these conditions are not currently capable of monitoring the wearer's stress level. The aim of this study was to assess the feasibility of stress monitoring with an in-ear device.
Method: In-ear heartbeat sounds and clinical-grade electrocardiography (ECG) signals were simultaneously recorded while 30 healthy young adults underwent a stress protocol.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!