Otoferlin as a multirole Ca signaling protein: from inner ear synapses to cancer pathways.

Front Cell Neurosci

Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France.

Published: July 2023

Humans have six members of the ferlin protein family: dysferlin, myoferlin, otoferlin, fer1L4, fer1L5, and fer1L6. These proteins share common features such as multiple Ca-binding C2 domains, FerA domains, and membrane anchoring through their single C-terminal transmembrane domain, and are believed to play a key role in calcium-triggered membrane fusion and vesicle trafficking. Otoferlin plays a crucial role in hearing and vestibular function. In this review, we will discuss how we see otoferlin working as a Ca-dependent mechanical sensor regulating synaptic vesicle fusion at the hair cell ribbon synapses. Although otoferlin is also present in the central nervous system, particularly in the cortex and amygdala, its role in brain tissues remains unknown. Mutations in the OTOF gene cause one of the most frequent genetic forms of congenital deafness, DFNB9. These mutations produce severe to profound hearing loss due to a defect in synaptic excitatory glutamatergic transmission between the inner hair cells and the nerve fibers of the auditory nerve. Gene therapy protocols that allow normal rescue expression of otoferlin in hair cells have just started and are currently in pre-clinical phase. In parallel, studies have linked ferlins to cancer through their effect on cell signaling and development, allowing tumors to form and cancer cells to adapt to a hostile environment. Modulation by mechanical forces and Ca signaling are key determinants of the metastatic process. Although ferlins importance in cancer has not been extensively studied, data show that otoferlin expression is significantly associated with survival in specific cancer types, including clear cell and papillary cell renal carcinoma, and urothelial bladder cancer. These findings indicate a role for otoferlin in the carcinogenesis of these tumors, which requires further investigation to confirm and understand its exact role, particularly as it varies by tumor site. Targeting this protein may lead to new cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394277PMC
http://dx.doi.org/10.3389/fncel.2023.1197611DOI Listing

Publication Analysis

Top Keywords

otoferlin
8
hair cells
8
ferlins cancer
8
cancer
7
role
5
otoferlin multirole
4
multirole signaling
4
signaling protein
4
protein inner
4
inner ear
4

Similar Publications

AAV-mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.

Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness.

View Article and Find Full Text PDF

The rise of cochlear gene therapy.

Mol Ther

November 2024

Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Tübingen, Tübingen, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Electronic address:

Recent evidence provides strong support for the safe and effective use of gene therapy in humans with hearing loss. By means of a single local injection of a set of adeno-associated virus (AAV) vectors, hearing was partially restored in several children with neurosensory nonsyndromic autosomal recessive deafness 9 (DFNB9), harboring variants in the OTOF gene. Current research focuses on refining endoscopic and transmastoid injection procedures to reduce risks of side effects, as emerging evidence suggests bidirectional fluid exchanges between the ear and the brain.

View Article and Find Full Text PDF

Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals.

View Article and Find Full Text PDF

A base editor for the long-term restoration of auditory function in mice with recessive profound deafness.

Nat Biomed Eng

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China.

Article Synopsis
  • A specific mutation in the OTOF gene is linked to severe hearing loss, which is studied using mutant mice that mimic this condition.
  • Researchers used a base editor technique to correct the mutation in the inner ear of these mice, leading to significant restoration of hearing and otoferlin protein levels.
  • The findings suggest that base editing could be a promising approach for treating hereditary deafness in humans.
View Article and Find Full Text PDF

Our understanding of how otoferlin, the major calcium sensor in inner hair cells (IHCs) synaptic transmission, contributes to the overall dynamics of synaptic vesicle (SV) trafficking remains limited. To address this question, we generated a knock-in mouse model expressing an otoferlin-GFP protein, where GFP was fused to its C-terminal transmembrane domain. Similar to the wild type protein, the GFP-tagged otoferlin showed normal expression and was associated with IHC SV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!