Butterfly wing color made of pigmented liquid.

Cell Rep

Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: August 2023

A previously undescribed mechanism underlying butterfly wing coloration patterns was discovered in two distantly related butterfly species, Siproeta stelenes and Philaethria diatonica. These butterflies have bright green wings, but the color pattern is not derived from solid pigments or nanostructures of the scales or from the color of the cuticular membrane but rather from a liquid retained in the wing membrane. Wing structure differs between the green and non-green areas. In the non-green region, the upper and lower cuticular membranes are attached to each other, whereas in the green region, we observed a space of 5-10 μm where green liquid is held and living cells are present. A pigment analysis and tracer experiment revealed that the color of the liquid is derived from hemolymph components, bilin and carotenoid pigments. This discovery broadens our understanding of the diverse ways in which butterfly wings obtain their coloration and patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.112917DOI Listing

Publication Analysis

Top Keywords

butterfly wing
8
coloration patterns
8
butterfly
4
color
4
wing color
4
color pigmented
4
liquid
4
pigmented liquid
4
liquid undescribed
4
undescribed mechanism
4

Similar Publications

A wearable platform for biochemical sweat analysis using photonic crystal hydrogel.

Anal Chim Acta

February 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Wearable systems for health monitoring are highly desired in personal diagnostics and precision medicine while challenges remain in constructing such wearable systems with reliability and high performance. Herein, we report a wearable platform for non-invasive monitoring biomarkers in sweat. The device is composed of a butterfly-shaped like microfluidic platform in which responsive photonic crystal hydrogels are embedded in each butterfly wing as sensors.

View Article and Find Full Text PDF

Background: Trait variation is shaped by functional roles of traits and the strength and direction of selection acting on the traits. We hypothesized that in butterflies, sexually selected colouration is more variable owing to condition-dependent nature and directional selection on sexual ornaments, whereas naturally selected colouration may be less variable because of stabilising selection. We measured reflectance spectra, and extracted colour parameters, to compare the amount of variation in sexually versus naturally selected colour patches across wing surfaces and sexes of 20 butterfly species across 4 families (Nymphalidae, Papilionidae, Pieridae, Lycaenidae).

View Article and Find Full Text PDF

Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.

View Article and Find Full Text PDF

Butterfly wing patterns exhibit notable differences between the dorsal and ventral surfaces, and morphological analyses of them have provided insights into the ecological and behavioural characteristics of wing patterns. Conventional methods for dorsoventral comparisons are constrained by the need for homologous patches or shared features between two surfaces, limiting their applicability across species. We used a convolutional neural network (CNN)-based analysis, which can compare images of the two surfaces without focusing on homologous patches or features, to detect dorsoventral bias in two types of intraspecific variation: sexual dimorphism and mimetic polymorphism.

View Article and Find Full Text PDF

Butterfly pupal wing tissue with an eyespot organizer.

Cells Dev

January 2025

Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.

Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!