Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seed dormancy maximizes plant recruitment in habitats with variation in environmental suitability for seedling establishment. Yet, we still lack a comprehensive synthesis of the macroecological drivers of nondormancy and the different classes of seed dormancy: physiological dormancy, morphophysiological dormancy and physical dormancy. We examined current geographic patterns and environmental correlates of global seed dormancy variation. Combining the most updated data set on seed dormancy classes for > 10 000 species with > 4 million georeferenced species occurrences covering all of the world's biomes, we test how this distribution is driven by climate and fire regime. Seed dormancy is prevalent in seasonally cold and dry climates. Physiological dormancy occurs in relatively dry climates with high temperature seasonality (e.g. temperate grasslands). Morphophysiological dormancy is more common in forest-dominated, cold biomes with comparatively high and evenly distributed precipitation. Physical dormancy is associated with dry climates with strong seasonal temperature and precipitation fluctuations (e.g. deserts and savannas). Nondormancy is associated with stable, warm and wetter climates (e.g. tropical rain forest). Pyroclimate had no significant effect on the distribution of seed dormancy. The environmental drivers considered in this study had a comparatively low predictive power, suggesting that macroclimate is just one of several global drivers of seed dormancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!