The palladium-catalyzed reaction of aromatic amides with maleimides results in the formation of a double C-H bond activation product, which occurs at both the benzylic and meta positions. Computational chemistry studies suggest that the first C-H bond activation unfolds via a six-membered palladacycle, maleimide insertion, protonation of the Pd-N bond, and then activation of the meta C-H bond. The process concludes with reductive elimination, producing an annulation product. The energy decomposition analysis (EDA) showed that the deformation energy favors the ortho C-H bond activation process. However, this route is non-productive. The interaction energy controls the site where the maleimide is inserted into the Pd-C(sp ) bond, which determines its site selectivity. The energetic span model indicates that the meta C-H bond activation step is the one that determines the turnover frequency. Regarding the directing group, it has been concluded that the strong Pd-S bonding and the destabilizing effect of the deformation energy allow the 2-thiomethylphenyl to function effectively as a directing group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300531 | DOI Listing |
Nature
January 2025
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
A palladium-catalyzed Catellani-type [2+2+2] annulation reaction of aryl iodides, bromothiophenes, and norbornadiene, which proceeds via a tandem Heck coupling/double C-H bond activation and retro-Diels-Alder pathway to access thiophene-fused polyaromatics, is reported. The key feature of this protocol represents a NBD/NBE retaining annulation.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States.
Natural enzymes are powerful catalysts, reducing the apparent activation energy for reactions and enabling chemistry to proceed as much as 10 times faster than the corresponding solution reaction. It has been suggested for some time that, in some cases, quantum tunneling can contribute to this rate enhancement by offering pathways through a barrier inaccessible to activated events. A central question of interest to both physical chemists and biochemists is the extent to which evolution introduces mechanisms below the barrier, or tunneling mechanisms.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China.
A novel Ru-catalyzed radical-triggered trifunctionalization of hexenenitriles is presented, employing a strategy of remote cyano group migration and -C(sp)-H functionalization. Through remote cyano migration, the alkenyl moiety undergoes difunctionalization to the formation of a benzylic radical intermediate. This intermediate facilitates -selective C-H bond addition relative to the C-Ru bond within the Ru(III) complex, ultimately enabling trifunctionalization.
View Article and Find Full Text PDFDalton Trans
January 2025
Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
The assessment of copper(I) and hydrogen interactions is challenging and should be approached with caution. In this paper, we report an assessment of multiple copper(I) and hydrogen interactions in two unique copper(I) thione cages. Copper(I) -heterocyclic thione cages [{Cu(-Br)(-L1)}] (1) and [{Cu(-I)(-L1)}] (2) were synthesized and characterized with proximity enforced Cu⋯H interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!