Theoretical assessment of persistence and adaptation in weeds with complex life cycles.

Nat Plants

Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.

Published: August 2023

Herbicide-resistant weeds pose a substantial threat to global food security. Perennial weed species are particularly troublesome. Such perennials as Sorghum halepense spread quickly and are difficult to manage due to their ability to reproduce sexually via seeds and asexually through rhizomes. Our theoretical study of S. halepense incorporates this complex life cycle with control measures of herbicide application and tillage. Rooted in the biology and experimental data of S. halepense, our population-based model predicts population dynamics and target-site resistance evolution in this perennial weed. We found that the resistance cost determines the standing genetic variation for herbicide resistance. The sexual phase of the life cycle, including self-pollination and seed bank dynamics, contributes substantially to the persistence and rapid adaptation of S. halepense. While self-pollination accelerates target-site resistance evolution, seed banks considerably increase the probability of escape from control strategies and maintain genetic variation. Combining tillage and herbicide application effectively reduces weed densities and the risk of control failure without delaying resistance adaptation. We also show how mixtures of different herbicide classes are superior to rotations and mono-treatment in controlling perennial weeds and resistance evolution. Thus, by integrating experimental data and agronomic views, our theoretical study synergistically contributes to understanding and tackling the global threat to food security from resistant weeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435386PMC
http://dx.doi.org/10.1038/s41477-023-01482-1DOI Listing

Publication Analysis

Top Keywords

resistance evolution
12
complex life
8
food security
8
perennial weed
8
theoretical study
8
life cycle
8
herbicide application
8
experimental data
8
target-site resistance
8
genetic variation
8

Similar Publications

As the core of leaf functional traits, the trade-off relationship between the petiole and lamina expresses the plant's adaptability to the environment in terms of support structure and photosynthesis. We investigated the proportions of allometric growth in the relationship between the petiole and the lamina of broadleaf woody plants in temperate highland Tianshan Mountains montane forests through three dimensions (length, area, and mass), including the length of the lamina (LL) and the length of the petiole (PL), and the area of the lamina (LA) and petiole cross sectional area (PCA) versus the mass of the lamina (LM) and the mass of the petiole (PM), as well as exploring the characteristics of the variance in response to seasonal changes. We found that the functional traits in all three dimensions showed a clear convergent evolution as the seasons progressed, that is, a "seasonal effect" of increasing and then decreasing.

View Article and Find Full Text PDF

Acanthamoeba spp. are widespread protists that feed on bacteria via phagocytosis. This predation pressure has led many bacteria to evolve strategies to resist and survive inside these protists.

View Article and Find Full Text PDF

Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides.

Langmuir

January 2025

Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.

Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed.

View Article and Find Full Text PDF

Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.

View Article and Find Full Text PDF

The gut microbiome significantly impacts human health, yet cultivation challenges hinder its exploration. Here, we combine deep whole-metagenome sequencing with culturomics to selectively enrich for taxa and functional capabilities of interest. Using a modified commercial base medium, 50 growth modifications were evaluated, spanning antibiotics, physico-chemical conditions, and bioactive compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!