This study investigated the adsorption performance of biochar produced from different types of urban biowaste material viz., sugarcane bagasse (SB), brinjal stem (BS), and citrus peel (CP) for removal of heavy metal ions (Pb, Cu, Cr, and Cd) from aqueous solution. The effects of biowaste material, dosage of biochar, solution pH, and initial concentration of heavy metal ions and isotherm models were performed to understand the possible adsorption mechanisms. The results showed that the biochar derived from BS and SB removes Cu (99.94%), Cr (99.57%), and Cd (99.77%) whereas biochar derived from CP removes Pb (99.59%) and Cu (99.90%) more efficiently from the aqueous solution. Biochar derived from BS showed maximum adsorption capacity for Cu (246.31 mg g), Pb (183.15 mg g), and Cr (71.89 mg g) while the biochar derived from CP showed highest for Cd (15.46 mg g). Moreover, biochar derived from BS and SB has more polar functional groups and less hydrophobicity than the biochar derived from CP. This study reveals that solution pH and biochar doses play a major role in removal of heavy metal ions from aqueous solution. The results of Langmuir model fitted well for Pb and Cu while the Freundlich model for Cr and Cd. Our study concludes that the biochar derived from different biowaste materials adsorbs heavy metal ions majorly through surface complexation and precipitation processes. The results of this study will be very useful in selecting the effective urban biowaste material for making biochar for heavy metal removal from the aqueous environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-023-01866-1 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Life Sciences, Texas A&M University-Corpus Christi, TX, 78412, USA. Electronic address:
Biochar has been proposed as an effective material for mitigating greenhouse gas emissions from farmlands, but comparable information for earthen aquaculture ponds is limited. A field study was conducted to investigate the effects of adding biochar (200-1600 kg ha) derived from the invasive plant Spartina alterniflora on sediment physico-chemical properties, CH production potential (P), and the relevant functional gene abundances in earthen aquaculture ponds during the non-farming period. The results indicated that biochar treatments increased sediment porosity and salinity, while decreasing dissolved organic carbon and microbial biomass carbon.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
China Urban Construction Design & Research Institute Co., Ltd., Beijing 100120, China.
Constructed wetlands, serving as artificially simulated natural wetland water treatment systems, have emerged as effective technologies for ecologically treating wastewater. Biochar, a carbon material derived from biomass waste pyrolysis, possesses significant specific surface area, abundant functional groups, and high stability. The integration of biochar into artificial wetland systems enhances the removal efficiency of pollutants.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
Biochar can serve as an activator for potassium ferrate, significantly enhancing the treatment efficiency to antibiotics. However, the mechanism by which biochar activated potassium ferrate remained unclear, necessitating further investigation. Cellulose biochar (CBC) and lignin biochar (LBC) derived by two model compounds which were the highest proportion of content in biomass were adopted to be study object, to investigate the removal efficiency of tetracycline (TC) by ferrate synergetic with CBC and LBC, respectively for the first time, and thoroughly analyzed the adsorption and degradation processes within the reaction system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!