A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electric-field-induced colour switching in colloidal quantum dot molecules at room temperature. | LitMetric

Colloidal semiconductor quantum dots are robust emitters implemented in numerous prototype and commercial optoelectronic devices. However, active fluorescence colour tuning, achieved so far by electric-field-induced Stark effect, has been limited to a small spectral range, and accompanied by intensity reduction due to the electron-hole charge separation effect. Utilizing quantum dot molecules that manifest two coupled emission centres, we present a unique electric-field-induced instantaneous colour-switching effect. Reversible emission colour switching without intensity loss is achieved on a single-particle level, as corroborated by correlated electron microscopy imaging. Simulations establish that this is due to the electron wavefunction toggling between the two centres, induced by the electric field, and affected by the coupling strength. Quantum dot molecules manifesting two coupled emission centres may be tailored to emit distinct colours, opening the path for sensitive field sensing and colour-switchable devices such as a novel pixel design for displays or an electric-field-induced colour-tunable single-photon source.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-023-01606-0DOI Listing

Publication Analysis

Top Keywords

quantum dot
12
dot molecules
12
colour switching
8
coupled emission
8
emission centres
8
electric-field-induced
4
electric-field-induced colour
4
switching colloidal
4
quantum
4
colloidal quantum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!