Manganese dioxide is a good candidate for effective energy storage and conversion as it possesses rich electrochemistry. The compound also shows a wide polymorphism. The γ-variety, an intergrowth of β- and R-MnO, has been extensively studied in several types of batteries (e.g., Zn/MnO, Li-ion) and is a common electrode material for commercial batteries. It is well known that the insertion of protons thermodynamically stabilizes γ-MnO with respect to β-MnO. Protons can enter the structure either by forming groups of 4 hydroxyls around a Mn vacancy, called a Ruetschi defect, or by forming a hydroxyl group near a Mn ion, called a Coleman defect. These defects differently affect the electrochemistry of manganese oxide, and tailoring their amount in the structure can be used to tune the material properties. Previous studies have addressed the proton insertion process, but the role of the synthesis pathway on the amount of defects created is not well understood. We here investigate how the parameters in a hydrothermal synthesis of γ-MnO nanoparticles influence the amount and type of H-related defects. Structural investigations are carried out using Pair Distribution Function analysis, X-ray absorption spectroscopy, thermogravimetric analysis, and inelastic neutron scattering. We demonstrate the possibility to control the amount and type of defects introduced during the synthesis. While the amount of Ruetschi defects increases with synthesis temperature, it decreases with extended synthesis time, along with the amount of Coleman defects. Moreover, we discuss the arrangement of the defects in the γ-MnO nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c01815DOI Listing

Publication Analysis

Top Keywords

defects
8
h-related defects
8
defects γ-mno
8
hydrothermal synthesis
8
γ-mno nanoparticles
8
amount type
8
synthesis
6
amount
6
control h-related
4
γ-mno
4

Similar Publications

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

Objective: While the association of a syrinx with a tethered spinal cord in the context of VACTERL (vertebral defects [V], imperforate anus or anal atresia [A], cardiac malformations [C], tracheoesophageal defects [T] with or without esophageal atresia [E], renal anomalies [R], and limb defects [L]) association is known, the incidence of idiopathic syrinxes among these patients has not previously been reported. The authors aimed to characterize the incidence of syrinxes and the pattern of congenital anomalies in pediatric patients with VACTERL association, with a specific focus on the presence of idiopathic syrinxes in this population.

Methods: An institutional database was retrospectively queried for all pediatric patients with VACTERL association.

View Article and Find Full Text PDF

Objective: To compare the diagnostic capability of Pöschl reformations created from temporal bone CT (TBCT) and high-resolution noncontrast CT head exams (HR-NECTH) to detect and classify superior semicircular canal (SSC) abnormalities.

Study Design: Retrospective case review.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!