Cold-water coral diversity along the continental shelf margin of northwestern South China Sea.

Mar Environ Res

Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. Electronic address:

Published: September 2023

Scleractinian cold-water corals (CWCs) are one of the most important habitat engineers of the deep sea. Although the South China Sea (SCS) abuts the biodiversity center of scleractinian CWCs in the western Pacific, only a few sporadic records are available. We discovered new CWC sites by means of trawl sampling and video observation along the continental shelf of the northwestern SCS. All trawled scleractinian CWC specimens were identified to species level according to skeleton morphology and structure. The living CWCs and associated fauna recorded in the video were -identified to a higher level of classification. Scleractinian corals were identified to genus level, while non-scleractinian CWCs were identified to family level and given general names such as gorgonian corals, bamboo corals and black corals. Associated benthic dwellers were divided into major categories. A total of 28 scleractinian CWC species were identified to 7 families, 15 genera, and 1 additional subgenus. Among them, 13 species were colonial, including important habitat-forming species in the genera Eguchipsammia, Dendrophyllia and Cladopsammia. Non-scleractinian CWCs were identified to 7 families, including 4 families gorgonian corals, 1 family bamboo corals, and 2 families black corals. Gorgonian corals were the most abundant non-scleractinian CWCs in this region. Meanwhile, starfish, sea anemones, fish, gastropods, echinoderms, and other associated benthic fauna were recorded in the CWC habitats, with starfish belonging to the order Brisingida being most common. New scleractinian CWC assemblages were discovered along the continental seabed mounds in the northwestern SCS. This study highlights the remarkable diversity of cold-water scleractinian corals in the whole SCS, and shows the potential widespread distribution and conservation prospect of CWC habitats in this region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2023.106110DOI Listing

Publication Analysis

Top Keywords

scleractinian cwc
12
non-scleractinian cwcs
12
gorgonian corals
12
corals
10
continental shelf
8
south china
8
china sea
8
northwestern scs
8
fauna recorded
8
scleractinian corals
8

Similar Publications

Vulnerability of six cold-water corals to sediment resuspension from bottom trawling fishing.

Mar Pollut Bull

November 2023

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.

Bottom trawling can significantly affect benthic communities, directly through immediate removal of sessile organisms and indirectly through sediment resuspension. Submarine canyons, often surrounded by fishing grounds, are important habitats for cold-water corals (CWC). Vulnerability of CWCs to increased suspended sediment concentration (SSC) is key to understanding the severity of bottom trawling effects on those communities.

View Article and Find Full Text PDF

Cold-water coral diversity along the continental shelf margin of northwestern South China Sea.

Mar Environ Res

September 2023

Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. Electronic address:

Scleractinian cold-water corals (CWCs) are one of the most important habitat engineers of the deep sea. Although the South China Sea (SCS) abuts the biodiversity center of scleractinian CWCs in the western Pacific, only a few sporadic records are available. We discovered new CWC sites by means of trawl sampling and video observation along the continental shelf of the northwestern SCS.

View Article and Find Full Text PDF

Life cycle of the cold-water coral Caryophyllia huinayensis.

Sci Rep

February 2023

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany.

Little is known about the biology of cold-water corals (CWCs), let alone the reproduction and early life stages of these important deep-sea foundation species. Through a three-year aquarium experiment, we described the reproductive mode, larval release periodicity, planktonic stage, larval histology, metamorphosis and post-larval development of the solitary scleractinian CWC Caryophyllia (Caryophyllia) huinayensis collected in Comau Fjord, Chilean Patagonia. We found that C.

View Article and Find Full Text PDF

In the North Patagonian fjord region, the cold-water coral (CWC) occurs in high densities, in spite of low pH and aragonite saturation. If and how these conditions affect the energy demand of the corals is so far unknown. In a laboratory experiment, we investigated the carbon and nitrogen (C, N) budget of from Comau Fjord under three feeding scenarios: (1) live fjord zooplankton (100-2,300 µm), (2) live fjord zooplankton plus krill (>7 mm), and (3) four-day food deprivation.

View Article and Find Full Text PDF

Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC to low pH under different feeding regimes through a long-term incubation experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!