A representative cDNA library has been constructed from the small quantities of poly(A)+ RNA present in unfertilised mouse oocytes. The construction of this library has been achieved by use of cow pea mosaic virus RNA as a carrier during isolation of polyadenylated message and during subsequent cloning procedures. This approach may be applicable to any system in which amounts of mRNA are limiting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(86)80160-0DOI Listing

Publication Analysis

Top Keywords

representative cdna
8
cdna library
8
mouse oocytes
8
construction representative
4
library mrna
4
mrna isolated
4
isolated mouse
4
oocytes representative
4
library constructed
4
constructed small
4

Similar Publications

DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.

View Article and Find Full Text PDF

Benchmarking multi-omics integrative clustering methods for subtype identification in colorectal cancer.

Comput Methods Programs Biomed

January 2025

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Background And Objective: Colorectal cancer (CRC) represents a heterogeneous malignancy that has concerned global burden of incidence and mortality. The traditional tumor-node-metastasis staging system has exhibited certain limitations. With the advancement of omics technologies, researchers are directing their focus on developing a more precise multi-omics molecular classification.

View Article and Find Full Text PDF

Rapid Generation of Reverse Genetics Systems for Coronavirus Research and High-Throughput Antiviral Screening Using Gibson DNA Assembly.

J Med Virol

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.

View Article and Find Full Text PDF

A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling.

View Article and Find Full Text PDF

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!