Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging.

Neurosci Biobehav Rev

Department of Psychiatry and Behavioral Sciences, USA; Center for Integrative Neuroscience, USA; Weill Institute for Neurosciences, USA; Kavli Institute for Fundamental Neuroscience, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158, USA.

Published: October 2023

Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073483PMC
http://dx.doi.org/10.1016/j.neubiorev.2023.105339DOI Listing

Publication Analysis

Top Keywords

pair bonding
8
healthy aging
8
social bonds
8
human health
8
monogamous species
8
social
5
attachment lifespan
4
lifespan examining
4
examining intersection
4
pair
4

Similar Publications

Coupling-Induced Dynamic Off-Centering of Cu Drives High Thermoelectric Performance in TlCuS.

J Am Chem Soc

January 2025

New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.

Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.

View Article and Find Full Text PDF

Liquid-liquid phase separation driven by charge heterogeneity.

Commun Phys

December 2024

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.

View Article and Find Full Text PDF

Carbonless DNA.

Phys Chem Chem Phys

January 2025

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.

View Article and Find Full Text PDF

In ion-pair catalysis, the last intermediate structures prior to the stereoselective transition states are of special importance for predictive models due to the high isomerization barrier between - and -substrate double bonds connecting ground and transition state energies. However, in prior experimental investigations of chiral phosphoric acids (CPA) solely the early intermediates could be investigated while the key intermediate remained elusive. In this study, the first experimental structural and conformational insights into ternary complexes with CPAs are presented using a special combination of low temperature and relaxation optimized N HSQC-NOESY NMR spectroscopy to enhance sensitivity.

View Article and Find Full Text PDF

The title compounds, CHO ( and ), are tetra-cyclic benzoates composed of a taxane ring with a fused dioxolane ring as the core skeleton. In compound , the five-membered dioxolane ring is essentially planar while the two cyclo-hexane rings and the cyclo-octane ring adopt chair and chair-chair forms, respectively, and there are three intra-molecular H⋯H short contacts. The corresponding ring conformations in are similar; however, one intra-molecular C-H⋯O inter-action and two H⋯H short contacts are observed, and the benzoyl and meth-oxy-methyl groups show orientational disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!