Oxidative stress plays a central role in cataract formation suggesting that antioxidants might slow cataract progression. The anticataract activity of N-acetylcysteine amide (NACA) and (2 R, 2 R')-3,3'-disulfanediyl bis(2-acetamidopropanamide) (diNACA) and/or N-acetylcysteine (NAC), were evaluated in porcine and rat lens models. Cataractogenesis via oxidation was induced with HO and/or glucose oxidase (GO). Porcine lenses were incubated in 0.1 mM, 1 mM, or 10 mM NAC, NACA or diNACA for 24 h. Lenses were then transferred to media containing 0.75 mM HO and 4.63U of GO in order to maintain a constant HO level for an additional 8 h. At the end of incubation, lenses were imaged under darkfield microscopy. Separately, rat lenses were extracted from 3-week-old Wistar rats and incubated with either 10 mM NACA or 10 mM diNACA for 24 h prior to treatment with 0.2U GO to generate a steady source of ∼0.6 mM HO. Rat lenses were analyzed by LC-MS/MS to quantify changes in cysteine, cystine, glutathione (GSH) or oxidised glutathione (GSSG) levels in the lens epithelium, cortex or core. Pre-treatment with NACA or diNACA followed by oxidation with HO and/or GO to stimulate cataract formation afforded rapid assessment in ex vivo porcine (32 h) and rat (48 h) lens models. Pre-treatment of isolated porcine lenses with 0.1 mM, 1 mM or 10 mM of either NAC, NACA or diNACA followed by HO/GO treatment resulted in reduced lens opacity relative to the lenses exposed to HO/GO, with NACA and diNACA reducing opacities to a greater extent than NAC. Rat lenses incubated with 10 mM NACA or 10 mM diNACA without exposure to HO showed no signs of opacities. Pre-treatment of rat lenses with 10 mM NACA or 10 mM diNACA, followed by GO cataract induction resulted in reduced opacities compared to control (GO alone). LC-MS/MS analyses revealed that NACA, but not diNACA, increased cysteine, cystine and GSH levels in rat lens epithelium and cortex regions. Taken together, both NACA and diNACA inhibited cataract formation to a greater extent than NAC (all at 1-10 mM) in an ex vivo porcine lens model. Both NACA and diNACA (both at 10 mM) reduced cataract formation in rat lenses. Based on LC-MS/MS analyses, NACA-induced reduction in opacity observed in rat lenses was attributed to enhanced cysteine and GSH levels while the diNACA-induced reduction in opacity induced did not consistently increase cysteine, cystine and GSH levels and, therefore, appears to involve a different antioxidant mechanism. These screening studies warrant further testing of NACA and diNACA as anticataract agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2023.109610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!