N-Acetylcysteine amide (NACA) and diNACA inhibit HO-induced cataract formation ex vivo in pig and rat lenses.

Exp Eye Res

Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand. Electronic address:

Published: September 2023

Oxidative stress plays a central role in cataract formation suggesting that antioxidants might slow cataract progression. The anticataract activity of N-acetylcysteine amide (NACA) and (2 R, 2 R')-3,3'-disulfanediyl bis(2-acetamidopropanamide) (diNACA) and/or N-acetylcysteine (NAC), were evaluated in porcine and rat lens models. Cataractogenesis via oxidation was induced with HO and/or glucose oxidase (GO). Porcine lenses were incubated in 0.1 mM, 1 mM, or 10 mM NAC, NACA or diNACA for 24 h. Lenses were then transferred to media containing 0.75 mM HO and 4.63U of GO in order to maintain a constant HO level for an additional 8 h. At the end of incubation, lenses were imaged under darkfield microscopy. Separately, rat lenses were extracted from 3-week-old Wistar rats and incubated with either 10 mM NACA or 10 mM diNACA for 24 h prior to treatment with 0.2U GO to generate a steady source of ∼0.6 mM HO. Rat lenses were analyzed by LC-MS/MS to quantify changes in cysteine, cystine, glutathione (GSH) or oxidised glutathione (GSSG) levels in the lens epithelium, cortex or core. Pre-treatment with NACA or diNACA followed by oxidation with HO and/or GO to stimulate cataract formation afforded rapid assessment in ex vivo porcine (32 h) and rat (48 h) lens models. Pre-treatment of isolated porcine lenses with 0.1 mM, 1 mM or 10 mM of either NAC, NACA or diNACA followed by HO/GO treatment resulted in reduced lens opacity relative to the lenses exposed to HO/GO, with NACA and diNACA reducing opacities to a greater extent than NAC. Rat lenses incubated with 10 mM NACA or 10 mM diNACA without exposure to HO showed no signs of opacities. Pre-treatment of rat lenses with 10 mM NACA or 10 mM diNACA, followed by GO cataract induction resulted in reduced opacities compared to control (GO alone). LC-MS/MS analyses revealed that NACA, but not diNACA, increased cysteine, cystine and GSH levels in rat lens epithelium and cortex regions. Taken together, both NACA and diNACA inhibited cataract formation to a greater extent than NAC (all at 1-10 mM) in an ex vivo porcine lens model. Both NACA and diNACA (both at 10 mM) reduced cataract formation in rat lenses. Based on LC-MS/MS analyses, NACA-induced reduction in opacity observed in rat lenses was attributed to enhanced cysteine and GSH levels while the diNACA-induced reduction in opacity induced did not consistently increase cysteine, cystine and GSH levels and, therefore, appears to involve a different antioxidant mechanism. These screening studies warrant further testing of NACA and diNACA as anticataract agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2023.109610DOI Listing

Publication Analysis

Top Keywords

naca dinaca
36
rat lenses
28
cataract formation
20
naca
13
dinaca
13
lenses
12
10 mm naca
12
naca 10 mm
12
10 mm dinaca
12
cysteine cystine
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!