Mutation and codon bias analysis of the spike protein of Omicron, the recent variant of SARS-CoV-2.

Int J Biol Macromol

School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China. Electronic address:

Published: October 2023

AI Article Synopsis

Article Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is a heavily mutated virus and designated as a variant of concern. To investigate the codon usage pattern of this new variant, we performed mutation and codon bias analysis for Omicron as well as for its sub-lineages BA.1 and BA.2 and compared them with the original SARS-CoV-2 and the Delta variant sequences obtained in this study. Our results indicate that the sub-lineage BA.1 and BA.2 have up to 23 sites of difference on the spike protein, which have minimal impact on function. The Omicron variant and its sub-lineages have similar codon usage patterns and A/U ending codons appear to be preferred over G/C ending codons. The Omicron has a lower degree of codon usage bias in spite of evidence that natural selection, mutation pressure and dinucleotide abundance shape the codon usage bias of Omicron, with natural selection being more significant on BA.2 than the other sub-lineages of Omicron. The codon usage pattern of Omicron variant that we explored provides valid information for a clearer understanding of Omicron and its sub-lineages, which could find application in vaccine development and optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126080DOI Listing

Publication Analysis

Top Keywords

codon usage
20
omicron variant
16
omicron
9
mutation codon
8
codon bias
8
bias analysis
8
spike protein
8
usage pattern
8
ba1 ba2
8
usage bias
8

Similar Publications

The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S.

View Article and Find Full Text PDF

Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.

View Article and Find Full Text PDF

Camellia-oil trees are economically valuable, oil-rich species within the genus Camellia, family Theaceae. Among these species, C. oleifera, a member of Section Oleifera in the genus, is the most extensively cultivated in China.

View Article and Find Full Text PDF

Biochemistry textbooks describe eukaryotic mRNAs as monocistronic. However, increasing evidence reveals the widespread presence and translation of upstream open reading frames preceding the "main" ORF. DNA and RNA viruses infecting eukaryotes often produce polycistronic mRNAs and viruses have evolved multiple ways of manipulating the host's translation machinery.

View Article and Find Full Text PDF

Comprehensive analysis of 111 Pleuronectiformes mitochondrial genomes: insights into structure, conservation, variation and evolution.

BMC Genomics

January 2025

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China.

Background: Pleuronectiformes, also known as flatfish, are important model and economic animals. However, a comprehensive genome survey of their important organelles, mitochondria, has been limited. Therefore, we aim to analyze the genomic structure, codon preference, nucleotide diversity, selective pressure and repeat sequences, as well as reconstruct the phylogenetic relationship using the mitochondrial genomes of 111 flatfish species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!