In this review, we outline recent advancements in small molecule drug design from a structural perspective. We compare protein structure prediction methods and explore the role of the ligand binding pocket in structure-based drug design. We examine various structural features used to optimize drug candidates, including functional groups, stereochemistry, and molecular weight. Computational tools such as molecular docking and virtual screening are discussed for predicting and optimizing drug candidate structures. We present examples of drug candidates designed based on their molecular structure and discuss future directions in the field. By effectively integrating structural information with other valuable data sources, we can improve the drug discovery process, leading to the identification of novel therapeutics with improved efficacy, specificity, and safety profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543554 | PMC |
http://dx.doi.org/10.1016/j.drudis.2023.103730 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.
View Article and Find Full Text PDFAm J Ther
January 2025
Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania.
Background: Medications initially intended for diabetes treatment are now being used by other patients for weight loss. In the specialized literature, there are numerous meta-analyses investigating this aspect.
Areas Of Uncertainty: The authors aimed to explore whether the application of scientometric methods for literature review within meta-analyses could provide clear answers to specific research questions.
OMICS
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
There is a growing interest in harnessing natural compounds and bioactive phytochemicals to accelerate drug discovery and development, including in the treatment of human cancers. Receptor tyrosine kinases (RTKs) are critical regulators of many fundamental cellular processes and have been implicated in cancer pathogenesis as well as targets for anticancer drug development. The members of TAM, Tyro3, Axl, and MERTK subfamily RTKs, especially Mer, affect immune homeostasis in the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!