Parkinson's disease (PD) is a neurodegenerative disorder that occurs most frequently in middle-aged and elderly people. It is characterized by an insidious onset and a complex etiology, and no effective treatment has been developed. The primary characteristic of PD is the degenerative death of midbrain dopaminergic neurons. The excessive autophagy of neurons and hyperactivation of microglia were shown to be involved in the apoptosis of dopaminergic neurons. Limonin (LM), a type of pure natural compound present in grapefruit or citrus fruits (e. g., lemon, orange) has been reported to inhibit apoptosis and inflammation. However, its role and mechanism of action in PD are unclear. In this study, we explored the effect and mechanism of action of LM in PD. In vivo experiments revealed that LM ameliorated 6-OHDA-induced reduced motor activity and PD-related pathological damage in rats. In vitro experiments revealed that LM inhibited the 6-OHDA-induced apoptosis of PC12 cells by inhibiting the excessive autophagy of neurons. In addition, LM inhibited microglial inflammation by activating the AKT/Nrf-2/HO-1 pathway and protected neurons against microglial inflammation-mediated neurotoxicity. In conclusion, the findings of this experiment demonstrated that LM exerted neuroprotective effects by inhibiting neuronal autophagy-mediated apoptosis and microglial activation in 6-OHDA-injected rats, thus indicating that LM can serve as a candidate for PD by targeting neuroinflammation and neuronal autophagy to inhibit neuronal apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2023.110739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!