AI Article Synopsis

  • - Surfactants are recognized for their ability to prevent corrosion by interacting with metal surfaces, but their effectiveness is limited due to their small size and required high concentrations in aqueous environments.
  • - Polymeric surfactants have emerged as promising corrosion inhibitors, offering improved performance due to their larger molecular structure, strong bonding capabilities, and the presence of polar functional groups that enhance their solubility in industrial electrolytes.
  • - The text discusses the advantages and challenges of polymer surfactants, including their industrial applications, colloidal properties, and how they serve as a modern alternative to traditional corrosion inhibitors.

Article Abstract

Surfactants are well known for their colloidal and corrosion inhibition potential (CIP) due to their strong propensity to interact with metallic surfaces. However, because of their small molecular size and the fact that they are only effective at relatively high concentrations, their application in aqueous phase corrosion inhibition is often restricted. Polymeric surfactants, a unique class of corrosion inhibitors, hold the potential to eradicate the challenges associated with using surfactants in corrosion inhibition. They strongly bond with the metallic surface and offer superior CIP because of their macromolecular polymeric structure and abundance of polar functional groups. In contrast to conventional polymeric corrosion inhibitors, the inclusion of polar functional groups also aids in their solubilization in the majority of popular industry-based electrolytes. Some of the major functional groups present in polymeric surfactants used in corrosion mitigation include O (ether), glycidyl (cyclic ether), -CONH (amide), -COOR (ester), -SOH (sulfonic acid), -COOH (carboxyl), -NH (amino), -  NR/-  NHR/-  NHR/-  NH (quaternary ammonium), -OH (hydroxyl), -CHOH (hydroxymethyl), etc. The current viewpoint offers state-of-the-art information on polymer surfactants as newly developing ideal alternatives for conventional corrosion inhibitors. The industrial scale-up, colloidal, coordination, adsorption properties, and structural requirements of polymer surfactants have also been established based on the knowledge obtained from the literature. Finally, the challenges, drawbacks, and potential benefits of using polymer surfactants have also been discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2023.102966DOI Listing

Publication Analysis

Top Keywords

polymeric surfactants
12
corrosion inhibition
12
corrosion inhibitors
12
functional groups
12
polymer surfactants
12
corrosion
8
surfactants corrosion
8
polar functional
8
surfactants
7
polymeric
5

Similar Publications

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons.

Int J Mol Sci

December 2024

Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.

View Article and Find Full Text PDF

Hematoxylin (HT) is a natural staining dye used in histopathology, often combined with Eosin for H&E staining. A poly(hematoxylin-co-l-lysine) (p(HT-co-l)) nanonetwork was synthesized through a one-step Mannich condensation reaction using formaldehyde as a linking agent. The resulting p(HT-co-l) nanogels had an average size of about 200 nm and exhibited a smooth surface and desirable functional groups such as -OH, -NH, and -COOH, as recognized by FT-IR analysis.

View Article and Find Full Text PDF

Exploring the Impact of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Mycophenolic Acid Through In Vitro and In Vivo Experiments.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.

Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!