Land use changes associated with habitat loss, fragmentation, and degradation exert profoundly detrimental impacts on biodiversity conservation. Urban development is one of the prevailing anthropogenic disturbances to wildlife habitat, because these developments are often considered permanent and irreversible. As a result, the potential benefits of built-up land relocation for biodiversity conservation have remained largely unexplored in environmental management practices. Here, we analyze recent built-up land relocation in Shanghai and explore how such restoration programs can affect future land change trajectories with regards to biodiversity conservation. Results show that 187.78 km built-up land in Shanghai was restored to natural habitat between 2017 and 2020. Further simulation analysis highlights that relocating built-up land can substantially promote conserve biodiversity. In particular, there would be less habitat loss, better natural habitat quality and more species habitat-suitable range under the scenarios with built-up land relocation. Species extinction assessment suggest that amphibians, mammals, and reptiles will all have an increasingly high extinction risk without built-up land relocation. However, there will even be a marginal decrease in extinction risk over time for mammals and reptiles if the relocation of built-up land is permitted, but still a moderate increase in extinction risk for amphibians. This study highlights the importance of incorporating rigorous conservation planning prior to development activities, thereby underpinning a sustainable approach to environmental management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118706 | DOI Listing |
Sci Rep
January 2025
Department of Geography, School of Environment, Education and Development, The University of Manchester, Arthur Lewis Building, Oxford Road, Manchester, M13 9PL, UK.
Urban woodland composition and configuration have strong associations with land surface temperatures (LST), but the evidence is contradictory due to different spatial scales, regional climate zones, woodland types and urban contexts. In this study, we analyse associations between urban woodland and LST within and between five cities in different Köppen climate zones. Our consistent methodology is framed around local climate zones and conducted at a fine spatial scale.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Wildlife Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS, 39762-9690, USA.
The increasing trend in land surface temperature (LST) and the formation of urban heat islands (UHIs) has emerged as a persistent challenge for urban planners and decision-makers. The current research was carried out to study the land use and land cover (LULC) changes and associated LST patterns in the planned city (Kabul) and the unplanned city (Jalalabad), Afghanistan, using Support Vector Machine (SVM) and Landsat data from 1998 to 2018. Future changes in LULC and LST were predicted for 2028 and 2038 using Cellular Automata-Markov (CA-Markov) and Artificial Neural Network (ANN) models.
View Article and Find Full Text PDFEnviron Manage
January 2025
Department of Geoecology, Institute of Geosciences and Geography, Martin Luther University, Halle-Wittenberg, Halle (Saale), Germany.
In the face of unabated urban expansion, understanding the intrinsic characteristics of landscape structure is pertinent to preserving ecological diversity and managing the supply of ecosystem services. This study integrates machine-learning-based geospatial and landscape ecological techniques to assess the dynamics of landscape structure in cities of the rainforest (Akure and Owerri) and Guinea savanna (Makurdi and Minna) ecological regions of Nigeria between 1986 and 2022. Supervised classification using the random forest (RF) machine-learning classifier was performed on Landsat images on the Google Earth Engine (GEE) platform, and landscape metrics were calculated with FRAGSTATS to assess landscape composition, configuration, and connectivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Political Science, Roma Tre University, Rome, Italy.
This study aims to examine the landscape transformation and temperature dynamics using multiple spectral indices. The processes of temporal fluctuations in the land surface temperature is strongly related to the morphological features of the area in which the temperature is determined, and the given factors significantly affect the thermal properties of the surface. This research is being conducted in Pakistan to identify the vegetation cover, water bodies, impervious surfaces, and land surface temperature using decadal remote sensing data with four intervals during 1993-2023 in the Mardan division, Khyber Pakhtunkhwa.
View Article and Find Full Text PDFSci Total Environ
February 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Since the Industrial Revolution, significant changes in global land-use patterns have occurred, which have disrupted terrestrial carbon emissions. However, the disturbance processes, change trends, and distribution patterns are not clear. Therefore, the changes in terrestrial carbon emissions (E) caused by land-use change (LUC) since 1850 were analyzed in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!