Chemical availability of fallout radionuclides in cryoconite.

J Environ Radioact

School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK.

Published: November 2023

AI Article Synopsis

  • Atmospheric deposition contributes to legacy fallout radionuclides (FRNs) accumulating in cryoconite on glaciers, which can be released into meltwater.
  • The study assessed chemical availability of FRNs in cryoconite from glaciers in Sweden and Iceland, discovering varying solubility levels for different radionuclides.
  • This research highlights potential environmental and health risks associated with FRN contamination in glacial meltwater impacting ecosystems downstream.

Article Abstract

Atmospheric deposition on glaciers is a major source of legacy fallout radionuclides (FRNs) accumulating in cryoconite, a dark granular material with surface properties that efficiently bind FRN contaminants (specifically Cs; Pb; Am). Cryoconite-bound FRNs in glaciers can be released when they interact with and are transported by glacial meltwater, resulting in the discharge of amassed particulate contaminants into aquatic and terrestrial environments downstream. The environmental consequences of FRN release from the cryosphere are poorly understood, including impacts of cryoconite-sourced FRNs for alpine food chains. Consequently, there is limited understanding of potential health risks to humans and animals associated with the consumption of radiologically-contaminated meltwater. To assess the chemical availability of cryoconite-adsorbed FRNs we used a three-stage sequential chemical extraction method, applied to cryoconite samples from glaciers in Sweden and Iceland, with original FRN activity concentrations up to 3300 Bq kg for Cs, 10,950 Bq kg for unsupported Pb (Pb) and 24.1 Bq kg for Am, and orders of magnitude above regional backgrounds. Our results demonstrate that FRNs attached to cryoconite are solubilized to different degrees, resulting in a stage-wise release of Pb involving significant stepwise solubilization, while Cs and Am tend to be retained more in the particulate phase. This work provides an insight into the vulnerability of pristine glacial environments to the mobilization of FRN-contaminated particles released during glacier melting, and their potential impact on glacial-dependent ecology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2023.107260DOI Listing

Publication Analysis

Top Keywords

chemical availability
8
fallout radionuclides
8
frns
5
availability fallout
4
cryoconite
4
radionuclides cryoconite
4
cryoconite atmospheric
4
atmospheric deposition
4
deposition glaciers
4
glaciers major
4

Similar Publications

Can Focusing on One Deep Learning Architecture Improve Fault Diagnosis Performance?

J Chem Inf Model

January 2025

Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de Janeiro, 225, Marquês de São Vicente Street, Gávea, Rio de Janeiro, RJ 22451-900, Brazil.

Machine learning approaches often involve evaluating a wide range of models due to various available architectures. This standard strategy can lead to a lack of depth in exploring established methods. In this study, we concentrated our efforts on a single deep learning architecture type to assess whether a focused approach could enhance performance in fault diagnosis.

View Article and Find Full Text PDF

Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.

View Article and Find Full Text PDF

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

Dedenser: A Python Package for Clustering and Downsampling Chemical Libraries.

J Chem Inf Model

January 2025

Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

The screening of chemical libraries is an essential starting point in the drug discovery process. While some researchers desire a more thorough screening of drug targets against a narrower scope of molecules, it is not uncommon for diverse screening sets to be favored during the early stages of drug discovery. However, a cost burden is associated with the screening of molecules, with potential drawbacks if particular areas of chemical space are needlessly overrepresented.

View Article and Find Full Text PDF

Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!