Understanding the mechanics behind knee joint injuries and providing appropriate treatment is crucial for improving physical function, quality of life, and employability. In this study, we used a hybrid molecular dynamics-finite element-musculoskeletal model to determine the level of loads the knee can withstand when landing from different heights (20, 40, 60 cm), including the height at which cartilage damage occurs. The model was driven by kinematics-kinetics data of asymptomatic subjects at the peak loading instance of drop landing. Our analysis revealed that as landing height increased, the forces on the knee joint also increased, particularly in the vastus muscles and medial gastrocnemius. The patellar tendon experienced more stress than other ligaments, and the medial plateau supported most of the tibial cartilage contact forces and stresses. The load was mostly transmitted through cartilage-cartilage interaction and increased with landing height. The critical height of 126 cm, at which cartilage damage was initiated, was determined by extrapolating the collected data using an iterative approach. Damage initiation and propagation were mainly located in the superficial layers of the tibiofemoral and patellofemoral cartilage. Finally, this study provides valuable insights into the mechanisms of landing-associated cartilage damage and could help limit joint injuries and improve training programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399834PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287479PLOS

Publication Analysis

Top Keywords

cartilage damage
16
knee joint
12
joint injuries
8
landing height
8
cartilage
6
damage
5
landing
5
knee
4
joint biomechanics
4
biomechanics cartilage
4

Similar Publications

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of cartilage and the subsequent inflammation of joint tissues, leading to pain and reduced mobility. Despite advancements in symptomatic treatments, disease-modifying therapies for OA remain limited. This narrative review examines the dual role of autophagy in OA, emphasizing its protective functions during the early stages and its potential to contribute to cartilage degeneration in later stages.

View Article and Find Full Text PDF

Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls.

View Article and Find Full Text PDF

Blocking the Sphingosine-1-Phosphate Receptor 2 (S1P) Reduces the Severity of Collagen-Induced Arthritis in DBA-1J Mice.

Int J Mol Sci

December 2024

Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.

The amount of sphingosine 1-phosphate (S1P) found in the synovial tissue of individuals with rheumatoid arthritis is five times greater than that in those with osteoarthritis. Our study aims to determine whether inhibiting S1P can mitigate collagen-induced rheumatoid arthritis (CIA) by using an S1P antagonist, JTE-013, alongside DBA-1J wild-type (WT) and knock-out (KO) mice. CIA causes increases in arthritis scores, foot swelling, synovial hyperplasia, pannus formation, proteoglycan depletion, cartilage damage, and bone erosion, but these effects are markedly reduced when JTE-013 is administered to WT mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!