Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fruit peels have potential as prebiotic sources thanks to their dietary fiber contents. This study aimed to determine the effects of freeze-dried banana (BPP) and watermelon (WPP) peel powders on bile salt resistance, growth kinetics, and survival of Lactobacillus acidophilus and Lactiplantibacillus plantarum. In the presence of 0.5-1% bile salt, L. plantarum counts were 0.52-1.13 log CFU/mL higher in MRS broth added with 5% peel powder than without peel powder. Lactobacillus acidophilus population was 2.47-2.79 log CFU/mL higher in MRS broth added with 5% peel powder than without peel powder in the presence of 0.5% bile salt. Both peel powders did not affect the growth kinetics of L. acidophilus in milk. Conversely, the growth of L. plantarum was promoted in milk supplemented with peel powders and yielded a shorter generation time (P < 0.05). The maximum population density of L. plantarum in milk supplemented with BPP (8.68 log CFU/mL) was higher than in milk without peel powder (7.72 log CFU/mL; P < 0.05). Survival of L. acidophilus improved during storage at 4 °C in milk added with peel powders. The results suggest that BPP and WPP can be functional ingredients in probiotic foods and may be used to improve the growth and survival of probiotic cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12602-023-10131-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!