Redox signaling and modulation in ageing.

Biogerontology

Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University- Cerrahpasa, Istanbul, Turkey.

Published: October 2023

In spite of considerable progress that has been reached in understanding how reactive oxygen species (ROS) interact with its cellular targets, several important challenges regarding regulatory effects of redox signaling mechanisms remain to be addressed enough in aging and age-related disorders. Redox signaling is precisely regulated in different tissues and subcellular locations. It modulates the homeostatic balance of many regulatory facilities such as cell cycle, circadian rhythms, adapting the external environments, etc. The newly proposed term "adaptive redox homeostasis" describes the transient increase in ROS buffering capacity in response to amplified ROS formation rate within a physiological range. Redox-dependent second messengers are generated in subcellular locations according to a specific set of rules and regulations. Their appearance depends on cellular needs in response to variations in external and internal stimulus. The intensity and magnitude of ROS signaling determines its downstream effects. This issue includes review and research papers in the context of redox signaling mechanisms and related redox-regulatory interventions, aiming to guide for understanding the degenerative processes of biological ageing and alleviating possible prevention approaches for age-related complications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10522-023-10055-wDOI Listing

Publication Analysis

Top Keywords

redox signaling
16
signaling mechanisms
8
subcellular locations
8
redox
5
signaling modulation
4
modulation ageing
4
ageing spite
4
spite considerable
4
considerable progress
4
progress that has
4

Similar Publications

Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.

View Article and Find Full Text PDF

By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity.

View Article and Find Full Text PDF

Leveraging self-signal amplifying poly(acrylic acid)/polyaniline electrodes for label-free electrochemical immunoassays in protein biomarker detection.

Bioelectrochemistry

December 2024

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency.

View Article and Find Full Text PDF

NSUN2 lactylation drives cancer cell resistance to ferroptosis through enhancing GCLC-dependent glutathione synthesis.

Redox Biol

December 2024

China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Lactate-mediated lactylation on target proteins is recently identified as the novel posttranslational modification with profound biological functions. RNA 5-methylcytosine (mC) modification possesses dynamic and reversible nature, suggesting that activity of its methyltransferase NSUN2 is actively regulated. However, how NSUN2 activity is response to acidic condition in tumor microenvironment and then regulates cancer cell survival remain to be clarified.

View Article and Find Full Text PDF

A Chemical Redox Cycling-Based Dual-Mode Biosensor for Self-Powered Photoelectrochemical and Colorimetric Assay of Heat Shock Protein.

ACS Sens

January 2025

College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.

To advance the biological understanding of heat shock protein (HSP) in different types of cancers, it is crucial to achieve its accurate determination. Herein, a dual-mode self-powered photoelectrochemical (PEC) and colorimetric platform was proposed by integrating enzymatic catalysis and a chemical redox cycling amplification strategy. In this system, ascorbic acid (AA), as the signal reporter for PEC and colorimetric assay, can be regenerated during the tris(2-carboxyethyl) phosphine-mediated chemical redox cycling process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!