COVID-19, along with most respiratory diseases in the medical field, demonstrates significant ability to take its toll on global population. There is a particular difficulty in studying these conditions, which stems especially from the short supply of models for detailed investigation, the specific therapeutic knowledge required for disease scrutinization and the occasional need of BSL-3 [Biosafety Level 3] laboratories for research. Based on this, the process of drug development is hampered to a great extent. In the scenario of COVID-19, this difficulty is even more substantial on account of the current undefinition regarding the exact role of the ACE2 [Angiotensin-converting enzyme 2] receptor upon SARS-CoV-2 kinetics in human cells and the great level of demand in the investigation process of ACE2, which usually requires the laborious and ethically complicated usage of transgenic animal models overexpressing the receptor. Moreover, the rapid progression of the aforementioned diseases, especially COVID-19, poses a crucial necessity for adequate therapeutic solutions emergence. In this context, the work herein presented introduces a groundbreaking set of 3D models, namely spheroids and MatriWell cell culture inserts, whose remarkable ability to mimic the in vivo environment makes them highly suitable for respiratory diseases investigation, particularly SARS-CoV-2 infection. Using MatriWells, we developed an innovative platform for COVID-19 research: a pulmonary air-liquid interface [ALI] associated with endothelial (HUVEC) cells. Infection studies revealed that pulmonary (BEAS-2B) cells in the ALI reached peak viral load at 24h and endothelial cells, at 48h, demonstrating lung viral replication and subsequent hematogenous dissemination, which provides us with a unique and realistic framework for studying COVID-19. Simultaneously, the spheroids were used to address the understudied ACE2 receptor, aiming at a pronounced process of COVID-19 investigation. ACE2 expression not only increased spheroid diameter by 20% (p<0.001) and volume by 60% (p≤0.0001) but also led to a remarkable 640-fold increase in intracellular viral load (p≤0.01). The previously mentioned finding supports ACE2 as a potential target for COVID-19 treatment. Lastly, we observed a higher viral load in the MatriWells compared to spheroids (150-fold, p<0.0001), suggesting the MatriWells as a more appropriate approach for COVID-19 investigation. By establishing an advanced method for respiratory tract conditions research, this work paves the way toward an efficacious process of drug development, contributing to a change in the course of respiratory diseases such as COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391659 | PMC |
http://dx.doi.org/10.1016/j.bbiosy.2023.100082 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
UK Health Security Agency, London, United Kingdom.
Background: Due to advances in treatment, HIV is now a chronic condition with near-normal life expectancy. However, people with HIV continue to have a higher burden of mental and physical health conditions and are impacted by wider socioeconomic issues. Positive Voices is a nationally representative series of surveys of people with HIV in the United Kingdom.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Psychiatry, Yongin Severance Hospital, Yongin, Republic of Korea.
Background: The COVID-19 pandemic has accelerated the digitalization of modern society, extending digital transformation to daily life and psychological evaluation and treatment. However, the development of competencies and literacy in handling digital technology has not kept pace, resulting in a significant disparity among individuals. Existing measurements of digital literacy were developed before widespread information and communications technology device adoption, mainly focusing on one's perceptions of their proficiency and the utility of device operation.
View Article and Find Full Text PDFACS Nano
January 2025
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal.
The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFPLoS One
January 2025
School of Business, Anyang Normal University, Anyang, China.
The process of regional economic development is marked by a sustained exposure to external disturbances. In today's unpredictable and tumultuous global environment, such disturbances have become increasingly common, underlining the need to advance a region's economic resilience and foster adaptive mechanisms to handle environmental flux. Comparing the typical provinces in eastern, central, western and northeastern regions during the COVID-19 epidemic period, it found that the economic resilience performance of Henan Province, which is a representative of the central region, has the following characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!