Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. β-amyloid (Aβ) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aβ aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)Fe(μ-SCHCHCOOH)Fe(NO)] () that could stably deliver NO was explored in the current study. To determine whether exerts anti-AD efficacy, was added to neuron-like cells and primary cortical neurons along with Aβ. This study found that protected neuronal cells from Aβ-induced cytotoxicity, potentiated neuronal functions, and facilitated Aβ degradation through the NO-sGC-cGMP-AKT-GSK3β-CREB/MMP-9 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.3c00348DOI Listing

Publication Analysis

Top Keywords

dinitrosyl iron
8
alzheimer's disease
8
aβ aggregation
8
neuroprotective no-delivery
4
no-delivery dinitrosyl
4
iron complexes
4
complexes dnics
4
dnics amyloid
4
amyloid pathology
4
pathology alzheimer's
4

Similar Publications

Building upon an earlier study of heme-nitrosyl complexes (. , , 20496-20505), we examined a wide range of nonheme {FeNO} complexes (the superscript represents the Enemark-Feltham count) and two dinitrosyl iron complexes using DMRG-CASSCF calculations. Analysis of the wave functions in terms of resonance forms with different [π*(NO)] occupancies (where = 0-4 for mononitrosyl complexes) identified the dominant electronic configurations of {FeNO} and {FeNO} complexes as Fe-NO and Fe-NO, respectively, mirroring our previous findings on heme-nitrosyl complexes.

View Article and Find Full Text PDF

Reduction of Nitrite in an Iron(II)-Nitrito Compound by Thiols and Selenol Produces Dinitrosyl Iron Complexes via an {FeNO} Intermediate.

Inorg Chem

December 2024

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.

Reaction of an Fe(II) complex, [Fe(6-COO-tpa)] (), with PhE and NO produced [Fe(6-COO-tpa)(EPh)] (E = S, ; Se, ) and [Fe(6-COO-tpa)κO,O'-NO)] (), respectively (6-COOH-tpa is bis(2-pyridylmethyl)(6-carboxyl-2-pyridylmethyl)amine). Treatment of with 2 equiv of PhEH (E = S, Se) produced NO in ∼40% yields, respectively, along with and the DNICs, [Fe(EPh)(NO)] (E = S, Se). Treatment of with excess PhEH produced NO in similar yields, while was converted to the same DNICs and / (instead of ).

View Article and Find Full Text PDF

The concentrations of nitric oxide (NO) donors in the plasma of pregnant women with preeclampsia is several times higher than in healthy pregnant women. Antihypertensive drugs acting not through the NO-mediated mechanisms normalized BP in some women with preeclampsia, but did not significantly reduce the levels of NO donors in the plasma. It appears that preeclampsia is associated with insufficient NO availability for the targets, rather than low intensity of NO synthesis.

View Article and Find Full Text PDF

Structure, properties, and decomposition in biological systems of a new nitrosyl iron complex with 2-methoxythiophenolyls, promising for the treatment of cardiovascular diseases.

J Inorg Biochem

January 2025

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1, 119991 Moscow, Russian Federation; Scientific and Educational Center "Medical Chemistry" in Chernogolovka, Federal State Autonomous Educational Institution of Higher Education "State University of Education", Moscow Region, st. Vera Voloshina, 24, 141014 Mytishchi, Russian Federation.

A new promising binuclear tetranitrosyl iron complex with 2-methoxythiophenolyl of the composition [Fe(CHOS)(NO)] (complex 1), which acts on the therapeutic targets of cardiovascular diseases, guanylate and adenylate cyclase, has been synthesized. X-ray diffraction data show the presence of two isoforms of complex 1; according to quantum chemical calculations, the structure of only the trans isomer is stable in solutions. The processes of transformation of complex 1 in DMSO, in aqueous solutions, as well as in the presence of bovine serum albumin, reduced glutathione, and mucin were studied.

View Article and Find Full Text PDF

The effect of a promising NO donor, a binuclear nitrosyl iron complex (NIC) with 3,4-dichlorothiophenolyls [Fe(SCHCl)(NO)], on the adenylate cyclase and soluble guanylate cyclase enzymatic systems was studied. In in vitro experiments, this complex increased the concentration of important secondary messengers, such as cAMP and cGMP. An increase of their level by 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!