The transcriptional activator Klf5 recruits p300-mediated H3K27ac for maintaining trophoblast stem cell pluripotency.

J Mol Cell Biol

Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.

Published: January 2024

AI Article Synopsis

  • Klf5 is crucial for maintaining the proliferation and pluripotency of trophoblast stem cells (TSCs), which are essential for proper placental development and fetal growth.
  • Klf5 knockdown leads to a decrease in TSC-specific gene expression, resulting in rapid differentiation and inability to establish TSCs in vitro.
  • The mechanism involves Klf5 promoting an open chromatin state and maintaining histone modifications that enhance transcription of pluripotency genes, suggesting its importance in regulating TSC self-renewal and placental health.

Article Abstract

The effective proliferation and differentiation of trophoblast stem cells (TSCs) is indispensable for the development of the placenta, which is the key to maintaining normal fetal growth during pregnancy. Kruppel-like factor 5 (Klf5) is implicated in the activation of pluripotency gene expression in embryonic stem cells (ESCs), yet its function in TSCs is poorly understood. Here, we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes, consequently causing rapid differentiation of TSCs. Consistently, Klf5-depleted embryos lost the ability to establish TSCs in vitro. At the molecular level, Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes. Deprivation of Klf5 impaired the enrichment of p300, a major histone acetyl transferase of H3 lysine 27 acetylation (H3K27ac), and further reduced the occupancy of H3K27ac at promoter regions, leading to decreased transcriptional activity of TSC pluripotency genes. Thus, our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768793PMC
http://dx.doi.org/10.1093/jmcb/mjad045DOI Listing

Publication Analysis

Top Keywords

trophoblast stem
8
stem cells
8
tsc-specific genes
8
differentiation tscs
8
promoter regions
8
klf5
6
tscs
5
transcriptional activator
4
activator klf5
4
klf5 recruits
4

Similar Publications

Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.

View Article and Find Full Text PDF

Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome.

Cell Stem Cell

December 2024

Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. Electronic address:

The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear.

View Article and Find Full Text PDF

Extravillous trophoblasts reverse the decidualization induced increase in matrix production by secreting TGFβ antagonists Emilin-1 and Gremlin-1.

Cells Dev

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, United States of America; Jackson Laboratory, Farmington, CT, United States of America. Electronic address:

The maternal-fetal interface has long been considered as a frontier for an evolutionary arms race due to the close juxtaposition of genetically distinct tissues. In hemochorial species with deep placental invasion, including in humans, maternal stroma prepares its defenses against deep trophoblast invasion by decidualization, a differentiation process characterized by increased stromal cell matrix production, and contractile force generation. Decidualization has evolved from an ancestral wound healing response of fibroblast activation by the endometrial stroma.

View Article and Find Full Text PDF

The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.

View Article and Find Full Text PDF

Background: Amniotic mesenchymal stem cells (AMSCs) have been demonstrated as effective in tissue repair and regeneration. Trophoblast dysfunction is associated with several types of pregnancy complications. The aim of this study is to investigate the effects of AMSCs on the biological activities of human trophoblasts, as well as their molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!