Background: Sevoflurane (Sev) is a commonly used volatile anesthetic that might suppress the process of breast cancer. Also, circular RNAs (circRNAs) have been reported to partake in the pathogenesis of breast cancer. Accordingly, this research was designed to investigate the mechanism of hsa_circ_0005962 on Sev-mediated breast cancer development.
Methods: Sev was applied to treat breast cancer cells. Cell proliferation ability, migration, invasion, and apoptosis were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and flow cytometry assay. Proliferating cell nuclear antigen (PCNA), Matrix metallopeptidase 9 (MMP9), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), and Epithelial stromal interaction 1 (EPSTI1) were assessed using western blot assay. circ_0000129, microRNA-578 (miR-578), and EPSTI1 levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Using bioinformatics software (Circinteractome and Targetscan), the binding between miR-578 and circ_0000129 or EPSTI1 were predicted, and proved using dual-luciferase reporter and RNA pull-down assay. The biological roles of circ_0000129 and Sevoflurane on tumor growth were analyzed using a xenograft tumor model in vivo.
Results: Sevoflurane blocked tumor cell proliferation, migration, invasion, and promoted apoptosis. Circ_0000129 and EPSTI1 expression were increased, and miR-578 was decreased in breast cancer cells. Also, they presented an opposite trend in Sev-treated tumor cells. Circ_0000129 upregulation might abolish Sev-mediated tumor progression in vitro. Mechanically, circ_0000129 can affect EPSTI1 expression by sponging miR-578. Sev might inhibit tumor growth by regulating circ_0000129 in vivo.
Conclusion: Circ_0000129 relieved Sev-triggered suppression impacts on breast cancer development partly via the miR-578/EPSTI1 axis, which provides a new mechanism for studying mediated therapy of breast cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493489 | PMC |
http://dx.doi.org/10.1111/1759-7714.15053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!