An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-023-04888-0DOI Listing

Publication Analysis

Top Keywords

robotic platform
12
automated microextraction
8
microextraction packed
8
packed sorbent
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
wastewater samples
8
sorbent endocrine
4
endocrine disruptors
4

Similar Publications

Background: Single port robotic platform offers articulation and 360° camera rotation for anorectal tumour excision in a narrow pelvic space. This study assesses the clinical usefulness and outcomes of SP robotic transanal surgery.

Methods: Nine patients who underwent transanal excision using the SP robotic platform were included.

View Article and Find Full Text PDF

GPS/VIO integrated navigation system based on factor graph and fuzzy logic.

Sci Rep

December 2024

Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.

View Article and Find Full Text PDF

To achieve high-performance trajectory tracking for a manipulator, this study proposes a novel sliding mode control strategy incorporating a nonlinear disturbance observer. The observer is designed to estimate unknown models in real-time, enabling feedforward compensation for various uncertainties such as modeling errors, joint friction, and external torque disturbances. The control law is formulated by integrating the Backstepping method, Lyapunov theory, and global fast terminal sliding mode theory, ensuring global convergence to zero within finite time and enhancing system robustness.

View Article and Find Full Text PDF

Direct-drive servo systems are extensively applied in biomimetic robotics and other bionic applications, but their performance is susceptible to uncertainties and disturbances. This paper proposes an adaptive disturbance rejection Zeta-backstepping control scheme with adjustable damping ratios to enhance system robustness and precision. An iron-core permanent magnet linear synchronous motor (PMLSM) was employed as the experimental platform for the development of a dynamic model that incorporates compensation for friction and cogging forces.

View Article and Find Full Text PDF

The body structures and motion stability of worm-like and snake-like robots have garnered significant research interest. Recently, innovative serial-parallel hybrid segmented robots have emerged as a fundamental platform for a wide range of motion modes. To address the hyper-redundancy characteristics of these hybrid structures, we propose a novel caterpillar-inspired Stable Segment Update (SSU) gait generation approach, establishing a unified framework for multi-segment robot gait generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!