It is of great scientific and practical value to use effective technical means to monitor and warn the structural damage of bridges in real time and for a long time. Traditional image recognition network models are often limited by the lack of on-site images. In order to solve the problem of automatic recognition and parameter acquisition in digital images of bridge structures in the absence of data information, this paper proposes an automatic identification method for bridge structure damage areas based on digital images, which effectively achieves contour carving and quantitative characterization of bridge structure damage areas. Firstly, the digital image features of the bridge structure damage area are defined. By making full use of the feature that the pixel value of the damaged area is obviously different from that of the surrounding image, an image pre-processing method of the structure damaged area that can effectively improve the quality of the field shot image is proposed. Then, an improved Ostu method is proposed to organically fuse the global and local threshold features of the image to achieve the damaged area contour carving of the bridge structure surface image. The scale of damage area, the proportion of damage area and the calculation rule of damage area orientation are constructed. The key inspection and characteristic parameter diagnosis of bridge structure damage area are realized. Finally, test and analysis are carried out in combination with an actual project case. The results show that the method proposed in this paper is feasible and stable, which can improve the damage area measurement accuracy of the current bridge structure. The method can provide more data support for the detection and maintenance of the bridge structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397243PMC
http://dx.doi.org/10.1038/s41598-023-39740-zDOI Listing

Publication Analysis

Top Keywords

bridge structure
32
damage area
28
structure damage
20
damaged area
12
damage
10
area
10
bridge
9
structure
9
automatic identification
8
identification method
8

Similar Publications

Background: Primary progressive aphasia (PPA) is a dementia syndrome characterized by language and communication impairments, with relative sparing of other cognitive domains. As a relatively rare dementia syndrome, there are few measures developed and validated for individuals with PPA. Development of outcome measures tailored to the communication experiences of persons with PPA (PwPPA) is critical for the accurate assessment of interventions success.

View Article and Find Full Text PDF

Background: Black Americans (BAs), Hispanics/Latinos (H/Ls), and Africans (As) face a disproportionate burden of aging and Alzheimer's Disease and Related Dementias (AD/ADRD), coupled with underrepresentation in research. Further, researchers also report a lack of compliance on sensitive social determinants of health data for AD/ADRD research. For instance, the PRAPARE tool reports a low completion rate in community and clinical settings.

View Article and Find Full Text PDF

Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.

View Article and Find Full Text PDF

The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.

View Article and Find Full Text PDF

Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!