Ferroptosis is a predominant contributor to renal ischemia reperfusion injury (IRI) after kidney transplant, evoking delayed graft function and poorer long-term outcomes. The wide propagation of ferroptosis among cell populations in a wave-like manner, developing the "wave of ferroptosis" causes a larger area of tubular necrosis and accordingly aggravates renal allograft IRI. In this study, we decipher a whole new metabolic mechanism underlying ferroptosis and propose a novel spreading pathway of the "wave of ferroptosis" in the renal tissue microenvironment, in which renal IRI cell-secreted small extracellular vesicles (IRI-sEVs) delivering lncRNA WAC-AS1 reprogram glucose metabolism in adjacent renal tubular epithelial cell populations by inducing GFPT1 expression and increasing hexosamine biosynthesis pathway (HBP) flux, and consequently enhances O-GlcNAcylation. Additionally, BACH2 O-GlcNAcylation at threonine 389 in renal tubular epithelial cells prominently inhibits its degradation by ubiquitination and promotes importin α5-mediated nuclear translocation. We present the first evidence that intranuclear BACH2 suppresses SLC7A11 and GPX4 transcription by binding to their proximal promoters and decreases cellular anti-peroxidation capability, accordingly facilitating ferroptosis. Inhibition of sEV biogenesis and secretion by GW4869 and knockout of lncRNA WAC-AS1 in IRI-sEVs both unequivocally diminished the "wave of ferroptosis" propagation and protected against renal allograft IRI. The functional and mechanistic regulation of IRI-sEVs was further corroborated in an allograft kidney transplant model and an in situ renal IRI model. In summary, these findings suggest that inhibiting sEV-mediated lncRNA WAC-AS1 secretion and targeting HBP metabolism-induced BACH2 O-GlcNAcylation in renal tubular epithelial cells may serve as new strategies for protecting against graft IRI after kidney transplant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482833PMC
http://dx.doi.org/10.1038/s41418-023-01198-xDOI Listing

Publication Analysis

Top Keywords

lncrna wac-as1
16
renal allograft
12
kidney transplant
12
"wave ferroptosis"
12
renal tubular
12
tubular epithelial
12
renal
10
small extracellular
8
extracellular vesicles
8
delivering lncrna
8

Similar Publications

lncRNA WAC-AS1 promotes the progression of gastric cancer through miR-204-5p/HOXC8 axis.

Transl Oncol

December 2024

Department of Gastrointestinal and Colonretal Surgery, the third Norman Bethune Hospital of Jilin University, Changchun, Jilin, China. Electronic address:

LncRNAs affect tumorigenesis, and although the genesis, regulation and physiological mechanism of lncRNAs in gastric cancer (GC) have been reported, the research of lncRNAs still have a lot of value. Through comprehensive bioinformatics analysis, we screened the candidate lncRNA WAC-AS1(WAC-AS1). We analyzed WAC-AS1 expression in GC related tissues and cells using qRT-PCR.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited.

View Article and Find Full Text PDF

Background: The survival rate of hepatocellular carcinoma (HCC) is low and the prognosis is poor. Metabolic reprogramming is still an emerging hallmark of cancer, and reprogramming of cholesterol metabolism plays a crucial action in tumor pathogenesis. Increasing evidence suggests that cholesterol metabolism affects the cell proliferation, invasion, migration, and resistance to chemotherapy of HCC.

View Article and Find Full Text PDF

Cancer stemness and osteosarcoma (OS) malignant progression are closely associated. However, the molecular mechanisms underlying this association have not been fully demonstrated. Long noncoding RNAs (lncRNAs) are an intriguing class of widely prevalent endogenous RNAs involved in OS progression, the vast majority of which have not been characterized functionally.

View Article and Find Full Text PDF

Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!